Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add more save strategies for DPO training. #1255

Merged
merged 2 commits into from
Feb 6, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions src/axolotl/core/trainer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -1087,13 +1087,21 @@ def build_training_arguments(self, total_num_steps):
"use_reentrant": False
}

# set save_strategy and save_steps
if self.cfg.save_steps:
training_args_kwargs["save_strategy"] = "steps"
training_args_kwargs["save_steps"] = self.cfg.save_steps
elif self.cfg.save_strategy:
training_args_kwargs["save_strategy"] = self.cfg.save_strategy
else:
# default to saving each epoch if not defined
training_args_kwargs["save_strategy"] = "epoch"

training_args = TrainingArguments(
per_device_train_batch_size=self.cfg.micro_batch_size,
max_steps=self.cfg.max_steps or total_num_steps,
gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
learning_rate=self.cfg.learning_rate,
save_strategy="steps",
save_steps=self.cfg.save_steps,
output_dir=self.cfg.output_dir,
warmup_steps=self.cfg.warmup_steps,
logging_first_step=True,
Expand Down
Loading