-
-
Notifications
You must be signed in to change notification settings - Fork 896
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e75de2b
commit f683159
Showing
2 changed files
with
268 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
""" | ||
Test dataset loading under various conditions. | ||
""" | ||
|
||
import shutil | ||
import tempfile | ||
import unittest | ||
from pathlib import Path | ||
|
||
from datasets import Dataset | ||
from huggingface_hub import snapshot_download | ||
from transformers import AutoTokenizer | ||
|
||
from axolotl.utils.data import load_tokenized_prepared_datasets | ||
from axolotl.utils.dict import DictDefault | ||
|
||
|
||
class TestDatasetPreparation(unittest.TestCase): | ||
"""Test a configured dataloader.""" | ||
|
||
def setUp(self) -> None: | ||
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b") | ||
self.tokenizer.add_special_tokens( | ||
{ | ||
"bos_token": "<s>", | ||
"eos_token": "</s>", | ||
"unk_token": "<unk>", | ||
} | ||
) | ||
# Alpaca dataset. | ||
self.dataset = Dataset.from_list( | ||
[ | ||
{ | ||
"instruction": "Evaluate this sentence for spelling and grammar mistakes", | ||
"input": "He finnished his meal and left the resturant", | ||
"output": "He finished his meal and left the restaurant.", | ||
} | ||
] | ||
) | ||
|
||
def test_load_hub(self): | ||
"""Core use case. Verify that processing data from the hub works""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
prepared_path = Path(tmp_dir) / "prepared" | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 1024, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 2000 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
|
||
def test_load_local_hub(self): | ||
"""Niche use case. Verify that a local copy of a hub dataset can be loaded""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
tmp_ds_path = Path("mhenrichsen/alpaca_2k_test") | ||
tmp_ds_path.mkdir(parents=True, exist_ok=True) | ||
snapshot_download( | ||
repo_id="mhenrichsen/alpaca_2k_test", | ||
repo_type="dataset", | ||
local_dir=tmp_ds_path, | ||
) | ||
|
||
prepared_path = Path(tmp_dir) / "prepared" | ||
# Right now a local copy that doesn't fully conform to a dataset | ||
# must list data_files and ds_type otherwise the loader won't know | ||
# how to load it. | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 1024, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"ds_type": "parquet", | ||
"type": "alpaca", | ||
"data_files": [ | ||
"mhenrichsen/alpaca_2k_test/alpaca_2000.parquet", | ||
], | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 2000 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
shutil.rmtree(tmp_ds_path) | ||
|
||
def test_load_from_save_to_disk(self): | ||
"""Usual use case. Verify datasets saved via `save_to_disk` can be loaded.""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
tmp_ds_name = Path(tmp_dir) / "tmp_dataset" | ||
self.dataset.save_to_disk(tmp_ds_name) | ||
|
||
prepared_path = Path(tmp_dir) / "prepared" | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 256, | ||
"datasets": [ | ||
{ | ||
"path": str(tmp_ds_name), | ||
"type": "alpaca", | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 1 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
|
||
def test_load_from_dir_of_parquet(self): | ||
"""Usual use case. Verify a directory of parquet files can be loaded.""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
tmp_ds_dir = Path(tmp_dir) / "tmp_dataset" | ||
tmp_ds_dir.mkdir() | ||
tmp_ds_path = tmp_ds_dir / "shard1.parquet" | ||
self.dataset.to_parquet(tmp_ds_path) | ||
|
||
prepared_path: Path = Path(tmp_dir) / "prepared" | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 256, | ||
"datasets": [ | ||
{ | ||
"path": str(tmp_ds_dir), | ||
"ds_type": "parquet", | ||
"name": "test_data", | ||
"data_files": [ | ||
str(tmp_ds_path), | ||
], | ||
"type": "alpaca", | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 1 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
|
||
def test_load_from_dir_of_json(self): | ||
"""Standard use case. Verify a directory of json files can be loaded.""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
tmp_ds_dir = Path(tmp_dir) / "tmp_dataset" | ||
tmp_ds_dir.mkdir() | ||
tmp_ds_path = tmp_ds_dir / "shard1.json" | ||
self.dataset.to_json(tmp_ds_path) | ||
|
||
prepared_path: Path = Path(tmp_dir) / "prepared" | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 256, | ||
"datasets": [ | ||
{ | ||
"path": str(tmp_ds_dir), | ||
"ds_type": "json", | ||
"name": "test_data", | ||
"data_files": [ | ||
str(tmp_ds_path), | ||
], | ||
"type": "alpaca", | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 1 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
|
||
def test_load_from_single_parquet(self): | ||
"""Standard use case. Verify a single parquet file can be loaded.""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
tmp_ds_path = Path(tmp_dir) / "tmp_dataset.parquet" | ||
self.dataset.to_parquet(tmp_ds_path) | ||
|
||
prepared_path: Path = Path(tmp_dir) / "prepared" | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 256, | ||
"datasets": [ | ||
{ | ||
"path": str(tmp_ds_path), | ||
"name": "test_data", | ||
"type": "alpaca", | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 1 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
|
||
def test_load_from_single_json(self): | ||
"""Standard use case. Verify a single json file can be loaded.""" | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
tmp_ds_path = Path(tmp_dir) / "tmp_dataset.json" | ||
self.dataset.to_json(tmp_ds_path) | ||
|
||
prepared_path: Path = Path(tmp_dir) / "prepared" | ||
cfg = DictDefault( | ||
{ | ||
"sequence_len": 256, | ||
"datasets": [ | ||
{ | ||
"path": str(tmp_ds_path), | ||
"name": "test_data", | ||
"type": "alpaca", | ||
}, | ||
], | ||
} | ||
) | ||
|
||
dataset, _ = load_tokenized_prepared_datasets( | ||
self.tokenizer, cfg, prepared_path | ||
) | ||
|
||
assert len(dataset) == 1 | ||
assert "input_ids" in dataset.features | ||
assert "attention_mask" in dataset.features | ||
assert "labels" in dataset.features | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |