Skip to content

Commit

Permalink
memoize dataset length for eval sample packing (#1974)
Browse files Browse the repository at this point in the history
* wip on multimodal sample packing support

* wip on multimodal packing support

* llama-1b-yml

* setup logging for test

* yml

* yml

* yml

* fix for __len__ for eval sample packing

* reverted irrelavant changes

* reformatted, reverted log message

* reverted unnecessary changes

* added e2e multigpu testing for eval sample packing

* formatting

* fixed e2e test_eval params

* fix test_eval e2e multigpu

* fix test_eval e2e multigpu

* Update tests/e2e/multigpu/test_eval.py

Co-authored-by: Wing Lian <[email protected]>

* Update tests/e2e/multigpu/test_eval.py

Co-authored-by: Wing Lian <[email protected]>

---------

Co-authored-by: Wing Lian <[email protected]>
  • Loading branch information
bursteratom and winglian authored Oct 17, 2024
1 parent 54673fd commit f62e237
Show file tree
Hide file tree
Showing 3 changed files with 239 additions and 6 deletions.
77 changes: 77 additions & 0 deletions examples/llama-3/qlora-1b.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
base_model: meta-llama/Llama-3.2-1B

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
13 changes: 7 additions & 6 deletions src/axolotl/utils/samplers/multipack.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,8 @@ def __init__(
self.eff_total_used = 0
self.eff_total_slots = 0

self.len_across_ranks = None

def set_epoch(self, epoch: int):
self.epoch = epoch

Expand Down Expand Up @@ -195,15 +197,14 @@ def calc_min_len(estimates: list[(int, float)]):
LOG.info(f"gather_len_batches: {repr(estimates)}")
return math.floor(0.998 * min(estimates))

min_len_batches = reduce_and_broadcast(
lambda: num,
calc_min_len,
)
min_len_batches = reduce_and_broadcast(lambda: num, calc_min_len)
return min_len_batches

def __len__(self):
len_batches = self.num_batches()
return self.gather_len_batches(len_batches)
if not self.len_across_ranks:
len_batches = self.num_batches()
self.len_across_ranks = self.gather_len_batches(len_batches)
return self.len_across_ranks

def _len_est(self):
efficiency = (
Expand Down
155 changes: 155 additions & 0 deletions tests/e2e/multigpu/test_eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
"""
E2E tests for multigpu eval
"""
import logging
import os
import unittest
from pathlib import Path

import yaml
from accelerate.test_utils import execute_subprocess_async

from axolotl.utils.dict import DictDefault

from ..utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e.multigpu")
os.environ["WANDB_DISABLED"] = "true"

AXOLOTL_ROOT = Path(__file__).parent.parent.parent.parent


class TestMultiGPUEval(unittest.TestCase):
"""
Test case for MultiGPU Eval Sample Packing
"""

@with_temp_dir
def test_eval_sample_packing(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"load_in_8bit": False,
"load_in_4bit": True,
"strict": False,
"sequence_len": 2048,
"adapter": "qlora",
"sample_packing": True,
"eval_sample_packing": True,
"pad_to_sequence_len": True,
"lora_r": 8,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_linear": True,
"lora_modules_to_save": ["embed_tokens", "lm_head"],
"val_set_size": 0.1,
"special_tokens": {"pad_token": "<|end_of_text|>"},
"datasets": [
{
"path": "teknium/GPT4-LLM-Cleaned",
"type": "alpaca",
},
],
"num_epochs": 1,
"max_steps": 5,
"micro_batch_size": 2,
"gradient_accumulation_steps": 4,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"loss_watchdog_threshold": 5.0,
"loss_watchdog_patience": 3,
"bf16": "auto",
"warmup_steps": 1,
"evals_per_epoch": 2,
"eval_max_new_tokens": 128,
"saves_per_epoch": 1,
"logging_steps": 1,
"weight_decay": 0.0,
}
)

# write cfg to yaml file
Path(temp_dir).mkdir(parents=True, exist_ok=True)
with open(Path(temp_dir) / "config.yaml", "w", encoding="utf-8") as fout:
fout.write(yaml.dump(cfg.to_dict(), Dumper=yaml.Dumper))

execute_subprocess_async(
[
"accelerate",
"launch",
"--num-processes",
"2",
"-m",
"axolotl.cli.train",
str(Path(temp_dir) / "config.yaml"),
]
)

@with_temp_dir
def test_eval(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"load_in_8bit": False,
"load_in_4bit": True,
"strict": False,
"sequence_len": 2048,
"adapter": "qlora",
"sample_packing": True,
"eval_sample_packing": False,
"pad_to_sequence_len": True,
"lora_r": 8,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_linear": True,
"lora_modules_to_save": ["embed_tokens", "lm_head"],
"val_set_size": 0.1,
"special_tokens": {"pad_token": "<|end_of_text|>"},
"datasets": [
{
"path": "teknium/GPT4-LLM-Cleaned",
"type": "alpaca",
},
],
"num_epochs": 1,
"max_steps": 5,
"micro_batch_size": 2,
"gradient_accumulation_steps": 4,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"loss_watchdog_threshold": 5.0,
"loss_watchdog_patience": 3,
"bf16": "auto",
"warmup_steps": 1,
"evals_per_epoch": 2,
"eval_max_new_tokens": 128,
"saves_per_epoch": 1,
"logging_steps": 1,
"weight_decay": 0.0,
}
)

# write cfg to yaml file
Path(temp_dir).mkdir(parents=True, exist_ok=True)
with open(Path(temp_dir) / "config.yaml", "w", encoding="utf-8") as fout:
fout.write(yaml.dump(cfg.to_dict(), Dumper=yaml.Dumper))

execute_subprocess_async(
[
"accelerate",
"launch",
"--num-processes",
"2",
"-m",
"axolotl.cli.train",
str(Path(temp_dir) / "config.yaml"),
]
)

0 comments on commit f62e237

Please sign in to comment.