-
-
Notifications
You must be signed in to change notification settings - Fork 898
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
WIP Add AutoGPTQ quantization script
- Loading branch information
Showing
3 changed files
with
302 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
# pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ | ||
|
||
# import debugpy | ||
# debugpy.listen(('0.0.0.0', 5678)) | ||
# debugpy.wait_for_client() | ||
# debugpy.breakpoint() | ||
|
||
import json | ||
import random | ||
import time | ||
from pathlib import Path | ||
import logging | ||
|
||
import torch | ||
from datasets import load_dataset, Dataset | ||
from transformers import AutoTokenizer, LlamaTokenizer, TextGenerationPipeline | ||
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | ||
from axolotl.prompters import AlpacaPrompter | ||
from axolotl.utils.models import load_model, load_tokenizer | ||
from axolotl.common.cli import TrainerCliArgs | ||
from axolotl.logging_config import configure_logging | ||
from axolotl.utils.dict import DictDefault | ||
# from scripts.finetune import load_cfg | ||
from finetune import load_cfg, get_merged_out_dir, do_merge_lora_model_and_tokenizer, load_datasets | ||
|
||
configure_logging() | ||
LOG = logging.getLogger("axolotl") | ||
|
||
# logging.basicConfig( | ||
# format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.DEBUG, datefmt="%Y-%m-%d %H:%M:%S" | ||
# ) | ||
|
||
# LOG.setLevel(logging.DEBUG) | ||
# handler = logging.StreamHandler() | ||
# formatter = logging.Formatter('%(asctime)s %(levelname)s [%(name)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') | ||
# handler.setFormatter(formatter) | ||
# LOG.addHandler(handler) | ||
|
||
print("Done importing...") | ||
|
||
## CHANGE BELOW ## | ||
config_path: Path = Path("./examples/llama-2/lora.yml") | ||
|
||
# pretrained_model_dir = "facebook/opt-125m" | ||
# quantized_model_dir = "opt-125m-4bit" | ||
dataset_name = "teknium/GPT4-LLM-Cleaned" | ||
# huggingface_username = "CHANGE_ME" | ||
## CHANGE ABOVE | ||
|
||
quantize_config = BaseQuantizeConfig( | ||
bits=4, # quantize model to 4-bit | ||
group_size=128, # it is recommended to set the value to 128 | ||
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad | ||
) | ||
|
||
# TEMPLATE = "<|prompt|>{instruction}</s><|answer|>" | ||
prompter = AlpacaPrompter() | ||
|
||
# def load_data(data_path, tokenizer, n_samples, template=TEMPLATE): | ||
def load_data(data_path, tokenizer, n_samples): | ||
# Load dataset | ||
dataset = load_dataset(data_path) | ||
|
||
if "train" in dataset: | ||
raw_data = dataset["train"] | ||
else: | ||
raw_data = dataset | ||
|
||
# Sample from the dataset if n_samples is provided and less than the dataset size | ||
if n_samples is not None and n_samples < len(raw_data): | ||
raw_data = raw_data.shuffle(seed=42).select(range(n_samples)) | ||
|
||
def tokenize(examples): | ||
instructions = examples["instruction"] | ||
outputs = examples["output"] | ||
|
||
prompts = [] | ||
texts = [] | ||
input_ids = [] | ||
attention_mask = [] | ||
for input_text, output_text in zip(instructions, outputs): | ||
# prompt = template.format(instruction=input_text) | ||
# prompt = next(prompter.build_prompt(instruction=input_text, output=output_text)) | ||
prompt = next(prompter.build_prompt(instruction=input_text)) | ||
text = prompt + output_text | ||
|
||
if len(tokenizer(prompt)["input_ids"]) >= tokenizer.model_max_length: | ||
continue | ||
|
||
tokenized_data = tokenizer(text) | ||
|
||
input_ids.append(tokenized_data["input_ids"][: tokenizer.model_max_length]) | ||
attention_mask.append(tokenized_data["attention_mask"][: tokenizer.model_max_length]) | ||
prompts.append(prompt) | ||
texts.append(text) | ||
|
||
return { | ||
"input_ids": input_ids, | ||
"attention_mask": attention_mask, | ||
"prompt": prompts, | ||
"text": texts, | ||
} | ||
|
||
raw_data = raw_data.map( | ||
tokenize, | ||
batched=True, | ||
batch_size=len(raw_data), | ||
num_proc=1, | ||
keep_in_memory=True, | ||
load_from_cache_file=False, | ||
# remove_columns=["instruction", "input"] | ||
) | ||
|
||
# Convert to PyTorch tensors | ||
raw_data.set_format(type='torch', columns=['input_ids', 'attention_mask']) | ||
|
||
# for sample in dataset: | ||
# sample["input_ids"] = torch.LongTensor(sample["input_ids"]) | ||
# sample["attention_mask"] = torch.LongTensor(sample["attention_mask"]) | ||
|
||
return raw_data | ||
|
||
|
||
# def get_tokenizer(): | ||
# print("Loading tokenizer...") | ||
# # tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) | ||
# tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) | ||
# return tokenizer | ||
|
||
# def get_model(): | ||
def load_merged_model(cfg: DictDefault): | ||
print("Loading model...") | ||
|
||
merged_out_dir = get_merged_out_dir(cfg) | ||
|
||
# Check if the merged model exists | ||
if not merged_out_dir.exists(): | ||
# If not, merge the model | ||
print("Merged model not found. Merging...") | ||
# model, tokenizer = load_model(cfg, inference=True) | ||
# do_merge_lora_model_and_tokenizer(cfg=cfg, model=model, tokenizer=tokenizer) | ||
raise NotImplementedError("Merging model is not implemented yet.") | ||
|
||
# load un-quantized model, by default, the model will always be loaded into CPU memory | ||
model = AutoGPTQForCausalLM.from_pretrained(merged_out_dir, quantize_config) | ||
# model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config) | ||
print("Model loaded.") | ||
return model | ||
|
||
def get_quantized_model(cfg: DictDefault): | ||
print("Loading quantized model...") | ||
quantized_model_dir = get_quantized_model_dir(cfg) | ||
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_safetensors=True) | ||
print("Model loaded.") | ||
return model | ||
|
||
def quantize_and_save(cfg: DictDefault, model, tokenizer, examples_for_quant): | ||
print("Quantize...") | ||
start = time.time() | ||
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask" | ||
model.quantize( | ||
examples_for_quant, | ||
batch_size=1, | ||
# batch_size=args.quant_batch_size, | ||
# use_triton=args.use_triton, | ||
# autotune_warmup_after_quantized=args.use_triton | ||
) | ||
end = time.time() | ||
print(f"quantization took: {end - start: .4f}s") | ||
|
||
# save quantized model | ||
print("Saving quantized model...") | ||
# model.save_quantized(quantized_model_dir) | ||
quantized_model_dir = get_quantized_model_dir(cfg) | ||
model.save_quantized(quantized_model_dir, use_safetensors=True) | ||
print("Saving tokenizer...") | ||
tokenizer.save_pretrained(quantized_model_dir) | ||
print("Saved.") | ||
|
||
return model | ||
|
||
def push_model(cfg: DictDefault, model, tokenizer): | ||
# def push_model(model): | ||
# push quantized model to Hugging Face Hub. | ||
# to use use_auth_token=True, Login first via huggingface-cli login. | ||
# or pass explcit token with: use_auth_token="hf_xxxxxxx" | ||
# (uncomment the following three lines to enable this feature) | ||
# repo_id = f"YourUserName/{quantized_model_dir}" | ||
print("Pushing to Huggingface hub...") | ||
# repo_id = f"{huggingface_username}/{quantized_model_dir}" | ||
repo_id = get_quantized_model_id(cfg) | ||
pretrained_model_dir = cfg['base_model'] | ||
commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}" | ||
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True, use_safetensors=True, safe_serialization=True) | ||
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True, safe_serialization=True) | ||
model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True, use_safetensors=True) | ||
tokenizer.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True) | ||
print("Pushed.") | ||
|
||
# def push_tokenizer(tokenizer): | ||
|
||
def get_quantized_model_id(cfg: DictDefault): | ||
# def get_quantized_model_id(cfg: DictDefault, quantize_config): | ||
# return f"{cfg.hub_model_id}-{quantize_config.bits}bits-gr{quantize_config.group_size}-desc_act{quantize_config.desc_act}" | ||
if not cfg.hub_model_id: | ||
raise ValueError("Missing hub_model_id in the configuration.") | ||
return f"{cfg.hub_model_id}-GPTQ" | ||
|
||
def get_quantized_model_dir(cfg: DictDefault): | ||
# def get_quantized_model_dir(cfg: DictDefault, quantize_config): | ||
if not cfg.output_dir: | ||
raise ValueError("Missing output_dir in the configuration.") | ||
return f"{cfg.output_dir.lstrip('./')}-GPTQ" | ||
|
||
def main(): | ||
print("Starting...") | ||
# return | ||
# prompt = "<|prompt|>How can entrepreneurs start building their own communities even before launching their product?</s><|answer|>" | ||
|
||
should_quantize = False | ||
# tokenizer = get_tokenizer() | ||
|
||
cfg = load_cfg(config_path) | ||
|
||
cfg['lora_model_dir'] = cfg['output_dir'] | ||
|
||
LOG.info(f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}") | ||
tokenizer = load_tokenizer(cfg) | ||
|
||
if should_quantize: | ||
print("Quantizing...") | ||
|
||
print("Loading dataset...") | ||
datasets = load_datasets(cfg=cfg, cli_args=TrainerCliArgs()) | ||
train_dataset = datasets.train_dataset | ||
n_samples = 128 | ||
# n_samples = 2 | ||
examples = train_dataset.shuffle(seed=42).select( | ||
[ | ||
random.randrange(0, len(train_dataset) - 1) # nosec | ||
for _ in range(n_samples) | ||
] | ||
) | ||
|
||
LOG.info("loading model and (optionally) peft_config...") | ||
# model, peft_config = load_model(cfg, tokenizer, inference=True) | ||
model = load_merged_model(cfg) | ||
# model = get_model() | ||
|
||
# examples = load_data(dataset_name, tokenizer, n_samples) | ||
|
||
# print(examples) | ||
examples_for_quant = [ | ||
{"input_ids": example["input_ids"], "attention_mask": example["attention_mask"]} | ||
for example in examples | ||
] | ||
# print(examples_for_quant) | ||
|
||
modelq = quantize_and_save(cfg, model, tokenizer, examples_for_quant) | ||
else: | ||
print("Loading quantized model...") | ||
modelq = get_quantized_model(cfg) | ||
|
||
push_model(cfg, modelq, tokenizer) | ||
|
||
main() | ||
|
||
|
||
# Load configure | ||
# Load dataset | ||
# Load tokenizer | ||
# Prepare database | ||
# Load previous model, final checkpoint | ||
|
||
|
||
# --merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False | ||
# accelerate launch ./scripts/finetune.py ./examples/llama-2/lora.yml --merge_lora --lora_model_dir="./lora-out" --load_in_8bit=False --load_in_4bit=False | ||
# CUDA_VISIBLE_DEVICES="1" accelerate launch ./scripts/finetune.py ./examples/llama-2/lora.yml --merge_lora --lora_model_dir="./lora-out" --load_in_8bit=False --load_in_4bit=False | ||
|
||
# HUB_MODEL_ID="Glavin001/llama-2-7b-alpaca_2k_test" accelerate launch ./scripts/quantize.py | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters