Skip to content

Commit

Permalink
Add a chat_template prompt strategy for DPO (#1725)
Browse files Browse the repository at this point in the history
* Implementing a basic chat_template strategy for DPO datasets

This mimics the sft chat_template strategy such that users can:
* Specify the messages field
* Specify the per message role and content fields
* speicfy the chosen and rejected fields
* Let the tokenizer construct the raw prompt
* Ensure the chosen and rejected fields don't have any prefix tokens

* Adding additional dpo chat template unittests

* Rename test class
  • Loading branch information
fozziethebeat authored Jul 21, 2024
1 parent fa91b69 commit 985819d
Show file tree
Hide file tree
Showing 5 changed files with 317 additions and 1 deletion.
81 changes: 81 additions & 0 deletions examples/llama-3/instruct-dpo-lora-8b.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

chat_template: llama3
rl: dpo
datasets:
- path: fozziethebeat/alpaca_messages_2k_dpo_test
type: chat_template.default
chat_template: llama3
field_messages: conversation
field_chosen: chosen
field_rejected: rejected
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
78 changes: 78 additions & 0 deletions src/axolotl/prompt_strategies/dpo/chat_template.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
"""
DPO prompt strategies for using tokenizer chat templates.
"""

from axolotl.utils.chat_templates import chat_templates


def default(
cfg, dataset_idx=0, **kwargs
): # pylint: disable=possibly-unused-variable,unused-argument
ds_cfg = cfg["datasets"][dataset_idx]
chat_template_str = chat_templates(cfg.chat_template)

field_messages = ds_cfg.get("field_messages", "messages")
field_chosen = ds_cfg.get("field_chosen", "chosen")
field_rejected = ds_cfg.get("field_rejected", "rejected")
field_message_role = ds_cfg.get("message_field_role", "role")
field_message_content = ds_cfg.get("message_field_content", "content")
role_map_inv = ds_cfg.get(
"roles",
{
"user": ["user"],
"assistant": ["assistant"],
"system": ["system"],
},
)
role_map = {}
for target, sources in role_map_inv.items():
for source in sources:
role_map[source] = target

def transform_fn(sample, tokenizer=None):
messages = sample[field_messages]
messages = [
{
"role": role_map[m[field_message_role]],
"content": m[field_message_content],
}
for m in messages
]
chosen = {
"role": role_map[sample[field_chosen][field_message_role]],
"content": sample[field_chosen][field_message_content],
}
rejected = {
"role": role_map[sample[field_rejected][field_message_role]],
"content": sample[field_rejected][field_message_content],
}

result = {}
result["prompt"] = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
chat_template=chat_template_str,
tokenize=False,
)

result["chosen"] = tokenizer.apply_chat_template(
[chosen],
add_generation_prompt=False,
chat_template=chat_template_str,
tokenize=False,
)
chosen_strip_index = result["chosen"].find(chosen["content"])
result["chosen"] = result["chosen"][chosen_strip_index:]

result["rejected"] = tokenizer.apply_chat_template(
[rejected],
add_generation_prompt=False,
chat_template=chat_template_str,
tokenize=False,
)
rejected_strip_index = result["rejected"].find(rejected["content"])
result["rejected"] = result["rejected"][rejected_strip_index:]

return result

return transform_fn
1 change: 1 addition & 0 deletions src/axolotl/utils/data/rl.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
"""data handling specific to DPO"""

import inspect
import logging
from functools import partial
Expand Down
2 changes: 1 addition & 1 deletion src/axolotl/utils/tokenization.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def process_tokens_for_rl_debug(tokens, color, tokenizer, text_only):
"""Helper function to process and color tokens."""
colored_tokens = [
color_token_for_rl_debug(tokenizer.decode(token), token, color, text_only)
for token in tokenizer.encode(tokens)
for token in tokenizer.encode(tokens, add_special_tokens=False)
]
return colored_tokens

Expand Down
156 changes: 156 additions & 0 deletions tests/prompt_strategies/test_dpo_chat_templates.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
"""
tests for chat_template prompt strategy
"""

import unittest

import pytest
from datasets import Dataset
from transformers import AutoTokenizer

from axolotl.prompt_strategies.dpo.chat_template import default
from axolotl.utils.dict import DictDefault


@pytest.fixture(name="assistant_dataset")
def fixture_assistant_dataset():
# pylint: disable=duplicate-code
return Dataset.from_list(
[
{
"messages": [
{
"role": "user",
"content": "hello",
},
{
"role": "assistant",
"content": "hello",
},
{
"role": "user",
"content": "goodbye",
},
],
"chosen": {
"role": "assistant",
"content": "goodbye",
},
"rejected": {
"role": "assistant",
"content": "party on",
},
}
]
)


@pytest.fixture(name="custom_assistant_dataset")
def fixture_custom_assistant_dataset():
# pylint: disable=duplicate-code
return Dataset.from_list(
[
{
"conversation": [
{
"speaker": "human",
"text": "hello",
},
{
"speaker": "agent",
"text": "hello",
},
{
"speaker": "human",
"text": "goodbye",
},
],
"better": {
"speaker": "agent",
"text": "goodbye",
},
"worse": {
"speaker": "agent",
"text": "party on",
},
}
]
)


@pytest.fixture(name="llama3_tokenizer")
def fixture_llama3_tokenizer():
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B")
tokenizer.eos_token = "<|eot_id|>"

return tokenizer


class TestAssistantDPOChatTemplateLlama3:
"""
Test class for assistant style datasets with llama-3 prompts using the chat_template strategy.
"""

def test_llama3_defaults(self, llama3_tokenizer, assistant_dataset):
# pylint: disable=duplicate-code
transform_fn = default(
DictDefault(
{
"chat_template": "llama3",
"datasets": [
{
"chat_template": "llama3",
}
],
}
)
)
result = transform_fn(assistant_dataset[0], tokenizer=llama3_tokenizer)
assert result["prompt"] == (
"<|begin_of_text|>"
+ "<|start_header_id|>user<|end_header_id|>\n\nhello<|eot_id|>"
+ "<|start_header_id|>assistant<|end_header_id|>\n\nhello<|eot_id|>"
+ "<|start_header_id|>user<|end_header_id|>\n\ngoodbye<|eot_id|>"
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"
)
assert result["chosen"] == "goodbye<|eot_id|>"
assert result["rejected"] == "party on<|eot_id|>"

def test_llama3_configured(self, llama3_tokenizer, custom_assistant_dataset):
# pylint: disable=duplicate-code
transform_fn = default(
DictDefault(
{
"chat_template": "llama3",
"datasets": [
{
"chat_template": "llama3",
"field_messages": "conversation",
"field_chosen": "better",
"field_rejected": "worse",
"message_field_role": "speaker",
"message_field_content": "text",
"roles": {
"user": ["human"],
"assistant": ["agent"],
"system": ["sys"],
},
}
],
}
)
)
result = transform_fn(custom_assistant_dataset[0], tokenizer=llama3_tokenizer)
assert result["prompt"] == (
"<|begin_of_text|>"
+ "<|start_header_id|>user<|end_header_id|>\n\nhello<|eot_id|>"
+ "<|start_header_id|>assistant<|end_header_id|>\n\nhello<|eot_id|>"
+ "<|start_header_id|>user<|end_header_id|>\n\ngoodbye<|eot_id|>"
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"
)
assert result["chosen"] == "goodbye<|eot_id|>"
assert result["rejected"] == "party on<|eot_id|>"


if __name__ == "__main__":
unittest.main()

0 comments on commit 985819d

Please sign in to comment.