-
-
Notifications
You must be signed in to change notification settings - Fork 899
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* mixtral multipack * use mixtral model * sample yml * calculate cu_seqlens properly * use updated flash ettention setting * attn var checks * force use of flash attention 2 for packing * lint * disable future fix for now * update support table
- Loading branch information
Showing
8 changed files
with
1,793 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
base_model: DiscoResearch/mixtral-7b-8expert | ||
model_type: MixtralForCausalLM | ||
tokenizer_type: LlamaTokenizer | ||
|
||
load_in_8bit: false | ||
load_in_4bit: true | ||
strict: false | ||
|
||
datasets: | ||
- path: tatsu-lab/alpaca | ||
type: alpaca | ||
dataset_prepared_path: last_run_prepared | ||
val_set_size: 0.0 | ||
output_dir: ./qlora-out | ||
|
||
adapter: qlora | ||
lora_model_dir: | ||
|
||
sequence_len: 4096 | ||
sample_packing: true | ||
pad_to_sequence_len: true | ||
|
||
lora_r: 32 | ||
lora_alpha: 16 | ||
lora_dropout: 0.05 | ||
lora_target_linear: true | ||
lora_fan_in_fan_out: | ||
#lora_target_modules: | ||
# - gate | ||
# - q_proj | ||
# - k_proj | ||
# - v_proj | ||
# - o_proj | ||
# - w1 | ||
# - w2 | ||
# - w3 | ||
|
||
wandb_project: | ||
wandb_entity: | ||
wandb_watch: | ||
wandb_name: | ||
wandb_log_model: | ||
|
||
gradient_accumulation_steps: 2 | ||
micro_batch_size: 1 | ||
num_epochs: 1 | ||
optimizer: adamw_bnb_8bit | ||
lr_scheduler: cosine | ||
learning_rate: 0.0002 | ||
|
||
train_on_inputs: false | ||
group_by_length: false | ||
bf16: true | ||
fp16: false | ||
tf32: false | ||
|
||
gradient_checkpointing: true | ||
early_stopping_patience: | ||
resume_from_checkpoint: | ||
local_rank: | ||
logging_steps: 1 | ||
xformers_attention: | ||
flash_attention: true | ||
|
||
loss_watchdog_threshold: 5.0 | ||
loss_watchdog_patience: 3 | ||
|
||
warmup_steps: 10 | ||
eval_steps: | ||
eval_table_size: | ||
eval_table_max_new_tokens: 128 | ||
save_steps: | ||
debug: | ||
deepspeed: deepspeed/zero2.json | ||
weight_decay: 0.0 | ||
fsdp: | ||
fsdp_config: | ||
special_tokens: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
""" | ||
Custom modeling code for mixtral | ||
""" | ||
|
||
from .configuration_moe_mistral import MixtralConfig # noqa | ||
from .modeling_moe_mistral import MixtralForCausalLM # noqa |
154 changes: 154 additions & 0 deletions
154
src/axolotl/models/mixtral/configuration_moe_mistral.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Mistral model configuration""" | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { | ||
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", | ||
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", | ||
} | ||
|
||
|
||
class MixtralConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an | ||
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. | ||
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | ||
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 32000): | ||
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`MistralModel`] | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 14336): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
num_key_value_heads (`int`, *optional*, defaults to 8): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): | ||
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention | ||
allows sequence of up to 4096*32 tokens. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
pad_token_id (`int`, *optional*): | ||
The id of the padding token. | ||
bos_token_id (`int`, *optional*, defaults to 1): | ||
The id of the "beginning-of-sequence" token. | ||
eos_token_id (`int`, *optional*, defaults to 2): | ||
The id of the "end-of-sequence" token. | ||
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||
Whether the model's input and output word embeddings should be tied. | ||
rope_theta (`float`, *optional*, defaults to 10000.0): | ||
The base period of the RoPE embeddings. | ||
sliding_window (`int`, *optional*, defaults to 4096): | ||
Sliding window attention window size. If not specified, will default to `4096`. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
```python | ||
>>> from transformers import MistralModel, MistralConfig | ||
>>> # Initializing a Mistral 7B style configuration | ||
>>> configuration = MixtralConfig() | ||
>>> # Initializing a model from the Mistral 7B style configuration | ||
>>> model = MixtralModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "mistral" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=32000, | ||
hidden_size=4096, | ||
intermediate_size=14336, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=8, | ||
hidden_act="silu", | ||
max_position_embeddings=4096 * 32, | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
pad_token_id=None, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
tie_word_embeddings=False, | ||
rope_theta=10000.0, | ||
attention_dropout=0.0, | ||
num_experts_per_token=2, | ||
num_experts=8, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
self.use_cache = use_cache | ||
self.rope_theta = rope_theta | ||
self.attention_dropout = attention_dropout | ||
self.num_experts = num_experts | ||
self.num_experts_per_token = num_experts_per_token | ||
|
||
# pylint: disable=duplicate-code | ||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) |
Oops, something went wrong.