Skip to content

Commit

Permalink
make phi training work with Loras (#588)
Browse files Browse the repository at this point in the history
* valdiation for phi loras

* fix model config class check

* update readme for phi traiing
  • Loading branch information
winglian authored Sep 16, 2023
1 parent be75668 commit 62eaee7
Show file tree
Hide file tree
Showing 4 changed files with 114 additions and 5 deletions.
8 changes: 6 additions & 2 deletions examples/phi/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
# Phi

Due to some nuances with the phi code, please use deepspeed when training phi.
Due to some nuances with the phi code, please use deepspeed when training phi for full finetune.

```shell
accelerate launch scripts/finetune.py examples/phi/phi-ft.yml --deepspeed deepspeed/zero1.json
accelerate launch -m axolotl.cli.train examples/phi/phi-ft.yml --deepspeed deepspeed/zero1.json

# OR

python -m axolotl.cli.train examples/phi/phi-qlora.yml
```
75 changes: 75 additions & 0 deletions examples/phi/phi-qlora.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
base_model: microsoft/phi-1_5
base_model_config: microsoft/phi-1_5
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: false
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
- path: garage-bAInd/Open-Platypus
type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./phi-sft-out

sequence_len: 1024
sample_packing: false # not CURRENTLY compatible with LoRAs
pad_to_sequence_len:

adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003

train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: true

gradient_checkpointing:
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:

warmup_steps: 100
eval_steps: 0.05
save_steps:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
bos_token: "<|endoftext|>"
eos_token: "<|endoftext|>"
unk_token: "<|endoftext|>"
pad_token: "<|endoftext|>"
16 changes: 16 additions & 0 deletions src/axolotl/utils/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ def normalize_config(cfg):
cfg.torch_dtype = torch.float32

model_config = load_model_config(cfg)
cfg.model_config_type = model_config.model_type

# figure out if the model is llama
cfg.is_llama_derived_model = (
Expand Down Expand Up @@ -237,6 +238,21 @@ def validate_config(cfg):
raise ValueError(
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
)

if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None:
LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA")

if cfg.model_config_type == "mixformer-sequential":
if cfg.sample_packing:
if cfg.adapter is not None:
LOG.warning(
"phi/MixFormer models are not currently compatible with LoRA and sample_packing"
)
if cfg.model_type == "AutoModelForCausalLM":
raise ValueError(
"`model_type: MixFormerSequentialForCausalLM` required for sample_packing"
)

# TODO
# MPT 7b
# https://github.com/facebookresearch/bitsandbytes/issues/25
Expand Down
20 changes: 17 additions & 3 deletions src/axolotl/utils/models.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
"""Module for models and model loading"""


import importlib
import logging
import math
import os
Expand Down Expand Up @@ -155,11 +154,26 @@ def load_model(
LOG.info("patching _expand_mask")
hijack_expand_mask()

model_config = load_model_config(cfg)

# special handling b/c remote MixFormers code doesn't have _no_split_modules set
if (
"MixFormerSequentialConfig" in model_config.__class__.__name__
and cfg.model_type == "AutoModelForCausalLM"
):
module_name = model_config.__class__.__module__.replace(
".configuration_mixformer_sequential", ".modeling_mixformer_sequential"
)
modeling_phi = importlib.import_module(module_name)
# pylint:disable=protected-access
modeling_phi.MixFormerSequentialForCausalLM._no_split_modules = [
"ParallelBlock"
]

model_kwargs = {}
if cfg.model_revision:
model_kwargs["revision"] = cfg.model_revision
if cfg.gptq:
model_config = load_model_config(cfg)
if not hasattr(model_config, "quantization_config"):
LOG.warning("model config does not contain quantization_config information")
else:
Expand Down

0 comments on commit 62eaee7

Please sign in to comment.