Skip to content

Commit

Permalink
Grokfast support (#1917)
Browse files Browse the repository at this point in the history
  • Loading branch information
winglian authored Nov 13, 2024
1 parent 1d7aee0 commit 5e98cdd
Show file tree
Hide file tree
Showing 8 changed files with 186 additions and 5 deletions.
12 changes: 12 additions & 0 deletions src/axolotl/core/trainer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -1287,6 +1287,18 @@ def get_post_trainer_create_callbacks(self, trainer):

if self.cfg.lisa_step_interval and self.cfg.lisa_n_layers:
callbacks.append(lisa_callback_factory(trainer))

if self.cfg.plugins:
plugin_manager = PluginManager.get_instance()
callbacks.extend(
[
cb
for cb in plugin_manager.add_callbacks_post_trainer(
self.cfg, trainer
)
if cb
]
)
return callbacks

def _get_trainer_cls(self):
Expand Down
15 changes: 10 additions & 5 deletions src/axolotl/integrations/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,7 @@ def create_lr_scheduler(

def add_callbacks_pre_trainer(self, cfg, model): # pylint: disable=unused-argument
"""
Adds callbacks to the trainer before training.
setup callbacks before creating the trainer.
Parameters:
cfg (dict): The configuration for the plugin.
Expand All @@ -155,14 +155,15 @@ def add_callbacks_post_trainer(
self, cfg, trainer
): # pylint: disable=unused-argument
"""
Adds callbacks to the trainer after training.
Adds callbacks to the trainer after creating the trainer.
This is useful for callbacks that require access to the model or trainer.
Parameters:
cfg (dict): The configuration for the plugin.
trainer (object): The trainer object for training.
Returns:
List[callable]: A list of callback functions to be added to the TrainingArgs
List[callable]: A list of callback functions to be added
"""
return []

Expand Down Expand Up @@ -393,7 +394,9 @@ def add_callbacks_pre_trainer(self, cfg, model):
"""
callbacks = []
for plugin in self.plugins.values():
callbacks.extend(plugin.add_callbacks_pre_trainer(cfg, model))
plugin_callbacks = plugin.add_callbacks_pre_trainer(cfg, model)
if plugin_callbacks: # if the plugin returned a list of callbacks
callbacks.extend(plugin_callbacks)
return callbacks

def add_callbacks_post_trainer(self, cfg, trainer):
Expand All @@ -409,7 +412,9 @@ def add_callbacks_post_trainer(self, cfg, trainer):
"""
callbacks = []
for plugin in self.plugins.values():
callbacks.extend(plugin.add_callbacks_post_trainer(cfg, trainer))
plugin_callbacks = plugin.add_callbacks_post_trainer(cfg, trainer)
if plugin_callbacks:
callbacks.extend(plugin_callbacks)
return callbacks

def post_train_unload(self, cfg):
Expand Down
21 changes: 21 additions & 0 deletions src/axolotl/integrations/grokfast/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2024 Jaerin Lee, Bong Gyun Kang, Kihoon Kim, Kyoung Mu Lee

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
13 changes: 13 additions & 0 deletions src/axolotl/integrations/grokfast/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Grokfast Optimizer

See https://github.com/ironjr/grokfast

### Usage

```yaml
plugins:
- axolotl.integrations.grokfast.GrokfastPlugin

grokfast_alpha: 2.0
grokfast_lamb: 0.98
```
50 changes: 50 additions & 0 deletions src/axolotl/integrations/grokfast/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
"""
Grokfast plugin for Axolotl
"""
import logging

from transformers.trainer_callback import TrainerCallback

from ..base import BasePlugin
from .args import GrokfastArgs # pylint: disable=unused-import. # noqa: F401
from .optimizer import gradfilter_ema

LOG = logging.getLogger("axolotl.integrations.grokfast")


class GrokfastCallbackHandler(TrainerCallback):
"""
Transformer trainer callbacks for Grokfast
"""

def __init__(self, *args_, alpha=0.98, lamb=2.0, **kwargs):
super().__init__(*args_, **kwargs)
self.grads = None
self.alpha = alpha
self.lamb = lamb

def on_train_begin(self, *args_, **kwargs): # pylint: disable=unused-argument
self.grads = None

def on_pre_optimizer_step(
self, args_, state, control, **kwargs
): # pylint: disable=unused-argument
model = kwargs.pop("model")
self.grads = gradfilter_ema(model, self.grads, alpha=self.alpha, lamb=self.lamb)
return control


class GrokfastPlugin(BasePlugin):
"""
Plugin for Grokfast optimizer integraton with Axolotl.
"""

def get_input_args(self):
return "axolotl.integrations.grokfast.GrokfastArgs"

def add_callbacks_post_trainer(self, cfg, trainer):
LOG.info("Adding Grokfast callback to the trainer")
callback = GrokfastCallbackHandler(
alpha=cfg.grokfast_alpha, lamb=cfg.grokfast_lamb
)
return [callback]
15 changes: 15 additions & 0 deletions src/axolotl/integrations/grokfast/args.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
"""
config args for grokfast plugin
"""
from typing import Optional

from pydantic import BaseModel


class GrokfastArgs(BaseModel):
"""
Input args for Grokfast optimizer.
"""

grokfast_alpha: Optional[float] = 0.98
grokfast_lamb: Optional[float] = 2.0
63 changes: 63 additions & 0 deletions src/axolotl/integrations/grokfast/optimizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright: MIT License (c) 2024 Jaerin Lee, Bong Gyun Kang, Kihoon Kim, Kyoung Mu Lee
# Reference: https://github.com/ironjr/grokfast

# pylint: skip-file
from collections import deque
from typing import Dict, Literal, Optional

import torch
import torch.nn as nn


def gradfilter_ma(
m: nn.Module,
grads: Optional[Dict[str, deque]] = None,
window_size: int = 100,
lamb: float = 5.0,
filter_type: Literal["mean", "sum"] = "mean",
warmup: bool = True,
trigger: bool = False, # For ablation study.
) -> Dict[str, deque]:
if grads is None:
grads = {
n: deque(maxlen=window_size)
for n, p in m.named_parameters()
if p.requires_grad and p.grad is not None
}

for n, p in m.named_parameters():
if p.requires_grad and p.grad is not None:
grads[n].append(p.grad.data.detach()) # .cpu())

# Modify the gradients.
if not warmup or len(grads[n]) == window_size and not trigger:
if filter_type == "mean":
avg = sum(grads[n]) / len(grads[n])
elif filter_type == "sum":
avg = sum(grads[n])
else:
raise ValueError(f"Unrecognized filter_type {filter_type}")
p.grad.data = p.grad.data + avg * lamb

return grads


def gradfilter_ema(
m: nn.Module,
grads: Optional[Dict[str, torch.Tensor]] = None,
alpha: float = 0.98,
lamb: float = 2.0,
) -> Dict[str, torch.Tensor]:
if grads is None:
grads = {
n: p.grad.data.detach()
for n, p in m.named_parameters()
if p.requires_grad and p.grad is not None
}

for n, p in m.named_parameters():
if p.requires_grad and p.grad is not None:
grads[n] = grads[n] * alpha + p.grad.data.detach() * (1 - alpha)
p.grad.data = p.grad.data + grads[n] * lamb

return grads
2 changes: 2 additions & 0 deletions src/axolotl/utils/config/models/input/v0_4_1/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -783,6 +783,8 @@ class Config:
is_mistral_derived_model: Optional[bool] = Field(default=None)
is_qwen_derived_model: Optional[bool] = Field(default=None)

plugins: Optional[List[str]] = Field(default=None)

@field_validator("datasets", mode="before")
@classmethod
def deprecate_sharegpt_datasets(cls, datasets):
Expand Down

0 comments on commit 5e98cdd

Please sign in to comment.