Skip to content

Commit

Permalink
add tests for merging lora and validating the dtype
Browse files Browse the repository at this point in the history
  • Loading branch information
winglian committed Apr 10, 2024
1 parent 5ed2939 commit 5767eea
Show file tree
Hide file tree
Showing 2 changed files with 86 additions and 17 deletions.
26 changes: 16 additions & 10 deletions src/axolotl/cli/merge_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

from axolotl.cli import do_merge_lora, load_cfg, print_axolotl_text_art
from axolotl.common.cli import TrainerCliArgs
from axolotl.utils.dict import DictDefault


def do_cli(config: Path = Path("examples/"), **kwargs):
Expand All @@ -27,21 +28,26 @@ def do_cli(config: Path = Path("examples/"), **kwargs):
flash_attention=False,
**kwargs,
)
cfg = modify_cfg_for_merge(parsed_cfg)

if not parsed_cfg.lora_model_dir and parsed_cfg.output_dir:
parsed_cfg.lora_model_dir = parsed_cfg.output_dir
if not Path(parsed_cfg.lora_model_dir).exists():
do_merge_lora(cfg=cfg, cli_args=parsed_cli_args)


def modify_cfg_for_merge(cfg: DictDefault) -> DictDefault:
if not cfg.lora_model_dir and cfg.output_dir:
cfg.lora_model_dir = cfg.output_dir
if not Path(cfg.lora_model_dir).exists():
raise ValueError(
f"Target directory for merge: `{parsed_cfg.lora_model_dir}` does not exist."
f"Target directory for merge: `{cfg.lora_model_dir}` does not exist."
)

parsed_cfg.load_in_4bit = False
parsed_cfg.load_in_8bit = False
parsed_cfg.flash_attention = False
parsed_cfg.deepspeed = None
parsed_cfg.fsdp = None
cfg.load_in_4bit = False
cfg.load_in_8bit = False
cfg.flash_attention = False
cfg.deepspeed = None
cfg.fsdp = None

do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)
return cfg


if __name__ == "__main__":
Expand Down
77 changes: 70 additions & 7 deletions tests/e2e/test_lora_llama.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,16 @@
"""
E2E tests for lora llama
"""

import json
import logging
import os
import unittest
from pathlib import Path

from axolotl.cli import load_datasets
from transformers.utils import is_torch_bf16_gpu_available

from axolotl.cli import do_merge_lora, load_datasets
from axolotl.cli.merge_lora import modify_cfg_for_merge
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
Expand Down Expand Up @@ -39,11 +42,6 @@ def test_lora(self, temp_dir):
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
Expand All @@ -57,6 +55,7 @@ def test_lora(self, temp_dir):
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 10,
}
)
normalize_config(cfg)
Expand All @@ -65,3 +64,67 @@ def test_lora(self, temp_dir):

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()

@with_temp_dir
def test_lora_merge(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 8,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 10,
"bf16": "auto",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()

cfg.lora_model_dir = cfg.output_dir
cfg.load_in_4bit = False
cfg.load_in_8bit = False
cfg.flash_attention = False
cfg.deepspeed = None
cfg.fsdp = None

cfg = modify_cfg_for_merge(cfg)
cfg.merge_lora = True

cli_args = TrainerCliArgs(merge_lora=True)

do_merge_lora(cfg=cfg, cli_args=cli_args)
assert (Path(temp_dir) / "merged/pytorch_model.bin").exists()

with open(
Path(temp_dir) / "merged/config.json", "r", encoding="utf-8"
) as f_handle:
config = f_handle.read()
config = json.loads(config)
if is_torch_bf16_gpu_available():
assert config["torch_dtype"] == "torch.bfloat16"
else:
assert config["torch_dtype"] == "torch.float16"

0 comments on commit 5767eea

Please sign in to comment.