Skip to content

Commit

Permalink
add e2e for flattening
Browse files Browse the repository at this point in the history
  • Loading branch information
winglian committed Dec 17, 2024
1 parent add3a94 commit 503ead8
Showing 1 changed file with 42 additions and 6 deletions.
48 changes: 42 additions & 6 deletions tests/e2e/test_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@

import logging
import os
import unittest
from pathlib import Path

from axolotl.cli import load_datasets
Expand All @@ -13,18 +12,15 @@
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestLlama(unittest.TestCase):
class TestLlama:
"""
Test case for Llama models
"""

@with_temp_dir
def test_fft_trust_remote_code(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
Expand All @@ -46,7 +42,8 @@ def test_fft_trust_remote_code(self, temp_dir):
},
],
"num_epochs": 1,
"micro_batch_size": 8,
"max_steps": 5,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
Expand All @@ -64,3 +61,42 @@ def test_fft_trust_remote_code(self, temp_dir):

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "model.safetensors").exists()

def test_batch_flattening(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "HuggingFaceTB/SmolLM2-135M",
"trust_remote_code": True,
"sequence_len": 512,
"val_set_size": 0.01,
"special_tokens": {
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 1,
"max_steps": 5,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"sample_packing": False,
"batch_flattening": True,
"bf16": True,
"save_safetensors": True,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "model.safetensors").exists()

0 comments on commit 503ead8

Please sign in to comment.