-
-
Notifications
You must be signed in to change notification settings - Fork 920
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
dpo/kto/ipo smoke tests w lora, simplify dpo dataset type names
- Loading branch information
Showing
3 changed files
with
158 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
""" | ||
E2E tests for lora llama | ||
""" | ||
|
||
import logging | ||
import os | ||
import unittest | ||
from pathlib import Path | ||
|
||
from axolotl.cli import load_rl_datasets | ||
from axolotl.common.cli import TrainerCliArgs | ||
from axolotl.train import train | ||
from axolotl.utils.config import normalize_config | ||
from axolotl.utils.dict import DictDefault | ||
|
||
from .utils import with_temp_dir | ||
|
||
LOG = logging.getLogger("axolotl.tests.e2e") | ||
os.environ["WANDB_DISABLED"] = "true" | ||
|
||
|
||
class TestDPOLlamaLora(unittest.TestCase): | ||
""" | ||
Test case for DPO Llama models using LoRA | ||
""" | ||
|
||
@with_temp_dir | ||
def test_dpo_lora(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"sequence_len": 1024, | ||
"load_in_8bit": True, | ||
"adapter": "lora", | ||
"lora_r": 64, | ||
"lora_alpha": 32, | ||
"lora_dropout": 0.1, | ||
"lora_target_linear": True, | ||
"special_tokens": {}, | ||
"rl": "dpo", | ||
"datasets": [ | ||
{ | ||
"path": "Intel/orca_dpo_pairs", | ||
"type": "chatml.intel", | ||
}, | ||
], | ||
"num_epochs": 1, | ||
"micro_batch_size": 4, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "paged_adamw_8bit", | ||
"lr_scheduler": "cosine", | ||
"max_steps": 20, | ||
"save_steps": 10, | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "adapter_model.bin").exists() | ||
|
||
@with_temp_dir | ||
def test_kto_pair_lora(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"sequence_len": 1024, | ||
"load_in_8bit": True, | ||
"adapter": "lora", | ||
"lora_r": 64, | ||
"lora_alpha": 32, | ||
"lora_dropout": 0.1, | ||
"lora_target_linear": True, | ||
"special_tokens": {}, | ||
"rl": "kto_pair", | ||
"datasets": [ | ||
{ | ||
"path": "Intel/orca_dpo_pairs", | ||
"type": "chatml.intel", | ||
}, | ||
], | ||
"num_epochs": 1, | ||
"micro_batch_size": 4, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "paged_adamw_8bit", | ||
"lr_scheduler": "cosine", | ||
"max_steps": 20, | ||
"save_steps": 10, | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "adapter_model.bin").exists() | ||
|
||
@with_temp_dir | ||
def test_ipo_lora(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"sequence_len": 1024, | ||
"load_in_8bit": True, | ||
"adapter": "lora", | ||
"lora_r": 64, | ||
"lora_alpha": 32, | ||
"lora_dropout": 0.1, | ||
"lora_target_linear": True, | ||
"special_tokens": {}, | ||
"rl": "ipo", | ||
"datasets": [ | ||
{ | ||
"path": "Intel/orca_dpo_pairs", | ||
"type": "chatml.intel", | ||
}, | ||
], | ||
"num_epochs": 1, | ||
"micro_batch_size": 4, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "paged_adamw_8bit", | ||
"lr_scheduler": "cosine", | ||
"max_steps": 20, | ||
"save_steps": 10, | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "adapter_model.bin").exists() |