Skip to content

Commit

Permalink
improve: Enhance code readability of prompt_tokenizers.py (#707)
Browse files Browse the repository at this point in the history
  • Loading branch information
seungduk-yanolja authored Oct 19, 2023
1 parent 440c3ab commit 3a99495
Showing 1 changed file with 80 additions and 107 deletions.
187 changes: 80 additions & 107 deletions src/axolotl/prompt_tokenizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,8 @@ def __init__(
self.prompter = prompter
self.tokenizer: PreTrainedTokenizer = tokenizer
self.train_on_inputs = train_on_inputs
# sequence_len and max_length can be different for CompletionPromptTokenizingStrategy.
# TODO: Document how they are different.
self.sequence_len = sequence_len
self.max_length = sequence_len

Expand All @@ -59,34 +61,31 @@ def supports_batched(self):
def _tokenize(
self, prompt: str, add_eos_token: bool = True, strip_bos_token: bool = False
) -> BatchEncoding:
result: BatchEncoding
empty = BatchEncoding(data={"input_ids": [], "attention_mask": []})
if not prompt:
LOG.warning("Empty text requested for tokenization.")
result = BatchEncoding(data={"input_ids": [], "attention_mask": []})
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
)
return empty

result = self.tokenizer(
prompt,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
)
if len(result["input_ids"]) == 0:
LOG.warning("Tokenizer result is empty. You may want to audit your dataset")
return empty

if (
len(result["input_ids"]) > 0
and result["input_ids"][-1] != self.tokenizer.eos_token_id
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.max_length
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)

if (
len(result["input_ids"]) > 0
and result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token:
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]

Expand Down Expand Up @@ -122,7 +121,7 @@ def tokenize_prompt(self, prompt):
if not self.train_on_inputs:
user_prompt_len = len(tokenized_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_prompt["labels"] = [-100] * user_prompt_len
tokenized_prompt["labels"] = [IGNORE_INDEX] * user_prompt_len
tokenized_res_prompt = self._tokenize(
response, strip_bos_token=True, add_eos_token=True
)
Expand Down Expand Up @@ -270,7 +269,7 @@ def tokenize_prompt(self, prompt):
user_prompt_len = len(tokenized_user_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_full_prompt["labels"] = [
-100
IGNORE_INDEX
] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]

return tokenized_full_prompt
Expand Down Expand Up @@ -334,6 +333,7 @@ def get_conversation_thread(self, prompt):
return prompt["conversations"]

def tokenize_prompt(self, prompt):
# Initial values. We will append to these as we go through the conversation.
result, current_len = tokenize_prompt_default()
conversation: Conversation = (
self.prompter._conversation.copy() # pylint: disable=protected-access
Expand All @@ -355,62 +355,67 @@ def tokenize_prompt(self, prompt):
for _, part in enumerate(
self.prompter.build_prompt(self.get_conversation_thread(prompt))
):
if isinstance(part, tuple):
if conversation.roles[0] in part[0]:
role = (
part[0].replace(role_remap[0]["from"], role_remap[0]["to"])
if role_remap
else part[0]
)
turn = role + part[1]
# this is still the user query, we should
if not part[1].strip():
LOG.warning(f"user turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=False,
strip_bos_token=True,
)
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
elif conversation.roles[1] in part[0]:
# TODO label assistant token/tokens w/ IGNORE_TOKEN_ID
role = (
part[0].replace(role_remap[1]["from"], role_remap[1]["to"])
if role_remap
else part[0]
)
turn = role + part[1]
# this should be the assistant response, should end with an eos token
if not part[1].strip():
LOG.warning(f"assistant turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=True,
strip_bos_token=True,
)
role_res = self._tokenize(
role.rstrip(),
add_eos_token=False,
strip_bos_token=True,
)
# not masked out from labels
labels = copy.deepcopy(res["input_ids"])
len_role = len(role_res["input_ids"])
labels[:len_role] = [IGNORE_TOKEN_ID] * min(
len_role, len(labels)
)
elif part[0] == "":
turn = part[1]
# this is only ever the first part, should include the bos token and the user query
res = self._tokenize(
turn, add_eos_token=False, strip_bos_token=False
)
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
else:
LOG.warning(f"unhandled role: {part[0]}")
continue
if not isinstance(part, tuple):
LOG.warning(f"expected tuple, got {part}")
continue

user, assistant = conversation.roles
role, content = part

# Uses "in" because role contains extra characters
if user in role:
role = (
role.replace(role_remap[0]["from"], role_remap[0]["to"])
if role_remap
else role
)
turn = role + content
# this is still the user query, we should
if not content.strip():
LOG.warning(f"user turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=False,
strip_bos_token=True,
)
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
elif assistant in role:
# TODO label assistant token/tokens w/ IGNORE_TOKEN_ID
role = (
role.replace(role_remap[1]["from"], role_remap[1]["to"])
if role_remap
else role
)
turn = role + content
# this should be the assistant response, should end with an eos token
if not content.strip():
LOG.warning(f"assistant turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=True,
strip_bos_token=True,
)
role_res = self._tokenize(
role.rstrip(),
add_eos_token=False,
strip_bos_token=True,
)
# not masked out from labels
labels = copy.deepcopy(res["input_ids"])
len_role = len(role_res["input_ids"])
labels[:len_role] = [IGNORE_TOKEN_ID] * min(len_role, len(labels))
elif role == "":
turn = content
# this is only ever the first part, should include the bos token and the user query
res = self._tokenize(
turn, add_eos_token=False, strip_bos_token=False
)
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
else:
LOG.warning(f"unhandled role: {role}")
continue

# pylint: disable=duplicate-code
result, current_len = parse_tokenized_to_result(
Expand All @@ -424,38 +429,6 @@ def tokenize_prompt(self, prompt):
except (KeyError, AssertionError, IndexError) as err:
raise InvalidDataException(str(err)) from err

def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
if not prompt.strip():
LOG.warning("Empty text requested for tokenization.")
result = BatchEncoding(data={"input_ids": [], "attention_mask": []})
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.sequence_len,
padding=False,
return_tensors=None,
)
if (
len(result["input_ids"]) > 0
and result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.sequence_len
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)

if (
len(result["input_ids"]) > 0
and result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]

result["labels"] = result["input_ids"].copy()
return result


def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]:
"""
Expand Down

0 comments on commit 3a99495

Please sign in to comment.