Skip to content

Commit

Permalink
add e2e smoke tests for shifted sparse attention
Browse files Browse the repository at this point in the history
  • Loading branch information
winglian committed Jan 14, 2024
1 parent 4135039 commit 34c62fb
Showing 1 changed file with 119 additions and 0 deletions.
119 changes: 119 additions & 0 deletions tests/e2e/patched/test_llama_s2_attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
"""
E2E tests for llama w/ S2 attn
"""

import logging
import os
import unittest
from pathlib import Path

from transformers.utils import is_torch_bf16_gpu_available

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from ..utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestLlamaShiftedSparseAttention(unittest.TestCase):
"""
Test case for Llama models using S2 Attn
"""

@with_temp_dir
def test_lora_s2_attn(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"sample_packing": False,
"flash_attention": True,
"s2_attention": True,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 8,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 10,
"save_steps": 5,
"eval_steps": 5,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True

normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()

@with_temp_dir
def test_fft_s2_attn(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"sample_packing": False,
"flash_attention": True,
"s2_attention": True,
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 8,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 10,
"save_steps": 5,
"eval_steps": 5,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True

normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()

0 comments on commit 34c62fb

Please sign in to comment.