-
-
Notifications
You must be signed in to change notification settings - Fork 899
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add e2e smoke tests for shifted sparse attention
- Loading branch information
Showing
1 changed file
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
""" | ||
E2E tests for llama w/ S2 attn | ||
""" | ||
|
||
import logging | ||
import os | ||
import unittest | ||
from pathlib import Path | ||
|
||
from transformers.utils import is_torch_bf16_gpu_available | ||
|
||
from axolotl.cli import load_datasets | ||
from axolotl.common.cli import TrainerCliArgs | ||
from axolotl.train import train | ||
from axolotl.utils.config import normalize_config | ||
from axolotl.utils.dict import DictDefault | ||
|
||
from ..utils import with_temp_dir | ||
|
||
LOG = logging.getLogger("axolotl.tests.e2e") | ||
os.environ["WANDB_DISABLED"] = "true" | ||
|
||
|
||
class TestLlamaShiftedSparseAttention(unittest.TestCase): | ||
""" | ||
Test case for Llama models using S2 Attn | ||
""" | ||
|
||
@with_temp_dir | ||
def test_lora_s2_attn(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"sequence_len": 1024, | ||
"sample_packing": False, | ||
"flash_attention": True, | ||
"s2_attention": True, | ||
"load_in_8bit": True, | ||
"adapter": "lora", | ||
"lora_r": 32, | ||
"lora_alpha": 64, | ||
"lora_dropout": 0.05, | ||
"lora_target_linear": True, | ||
"val_set_size": 0.1, | ||
"special_tokens": {}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"num_epochs": 2, | ||
"micro_batch_size": 8, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"lr_scheduler": "cosine", | ||
"max_steps": 10, | ||
"save_steps": 5, | ||
"eval_steps": 5, | ||
} | ||
) | ||
if is_torch_bf16_gpu_available(): | ||
cfg.bf16 = True | ||
else: | ||
cfg.fp16 = True | ||
|
||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "adapter_model.bin").exists() | ||
|
||
@with_temp_dir | ||
def test_fft_s2_attn(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"sequence_len": 1024, | ||
"sample_packing": False, | ||
"flash_attention": True, | ||
"s2_attention": True, | ||
"val_set_size": 0.1, | ||
"special_tokens": {}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"num_epochs": 2, | ||
"micro_batch_size": 8, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"lr_scheduler": "cosine", | ||
"max_steps": 10, | ||
"save_steps": 5, | ||
"eval_steps": 5, | ||
} | ||
) | ||
if is_torch_bf16_gpu_available(): | ||
cfg.bf16 = True | ||
else: | ||
cfg.fp16 = True | ||
|
||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "adapter_model.bin").exists() |