-
-
Notifications
You must be signed in to change notification settings - Fork 897
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
121 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
last_run_prepared |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
""" | ||
E2E tests for lora llama | ||
""" | ||
|
||
import logging | ||
import os | ||
import tempfile | ||
import unittest | ||
|
||
from axolotl.cli import load_datasets | ||
from axolotl.common.cli import TrainerCliArgs | ||
from axolotl.train import train | ||
from axolotl.utils.config import normalize_config | ||
from axolotl.utils.dict import DictDefault | ||
|
||
LOG = logging.getLogger("axolotl.tests.e2e") | ||
os.environ["WANDB_DISABLED"] = "true" | ||
|
||
|
||
class TestPhi(unittest.TestCase): | ||
""" | ||
Test case for Llama models using LoRA | ||
""" | ||
|
||
def test_ft(self): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "microsoft/phi-1_5", | ||
"base_model_config": "microsoft/phi-1_5", | ||
"trust_remote_code": True, | ||
"model_type": "MixFormerSequentialForCausalLM", | ||
"tokenizer_type": "AutoTokenizer", | ||
"sequence_len": 2048, | ||
"sample_packing": False, | ||
"load_in_8bit": True, | ||
"adapter": None, | ||
"val_set_size": 0.1, | ||
"special_tokens": { | ||
"unk_token": "<|endoftext|>", | ||
"bos_token": "<|endoftext|>", | ||
"eos_token": "<|endoftext|>", | ||
"pad_token": "<|endoftext|>", | ||
}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"dataset_shard_num": 10, | ||
"dataset_shard_idx": 0, | ||
"num_epochs": 1, | ||
"micro_batch_size": 1, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": tempfile.mkdtemp(), | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"lr_scheduler": "cosine", | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
|
||
def test_ft_packed(self): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "microsoft/phi-1_5", | ||
"base_model_config": "microsoft/phi-1_5", | ||
"trust_remote_code": True, | ||
"model_type": "MixFormerSequentialForCausalLM", | ||
"tokenizer_type": "AutoTokenizer", | ||
"sequence_len": 2048, | ||
"sample_packing": True, | ||
"load_in_8bit": True, | ||
"adapter": None, | ||
"val_set_size": 0.1, | ||
"special_tokens": { | ||
"unk_token": "<|endoftext|>", | ||
"bos_token": "<|endoftext|>", | ||
"eos_token": "<|endoftext|>", | ||
"pad_token": "<|endoftext|>", | ||
}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"dataset_shard_num": 10, | ||
"dataset_shard_idx": 0, | ||
"num_epochs": 1, | ||
"micro_batch_size": 1, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": tempfile.mkdtemp(), | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"lr_scheduler": "cosine", | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) |