-
-
Notifications
You must be signed in to change notification settings - Fork 920
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support seperate lr for embeddings, similar to loraplus (#1910) [skip…
… ci] * support seperate lr for embeddings, similar to loraplus * add test case for train w lr embedding scale * use kwarg for optimizer * make sure to handle the optimizer creation * make sure to handle for embedding_lr too * use smollm for e2e, check for embeddings lr first before wdecay
- Loading branch information
Showing
3 changed files
with
191 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
""" | ||
E2E tests for llama pretrain | ||
""" | ||
|
||
import logging | ||
import os | ||
import unittest | ||
from pathlib import Path | ||
|
||
from tbparse import SummaryReader | ||
|
||
from axolotl.cli import load_datasets | ||
from axolotl.common.cli import TrainerCliArgs | ||
from axolotl.train import train | ||
from axolotl.utils.config import normalize_config | ||
from axolotl.utils.dict import DictDefault | ||
|
||
from .utils import most_recent_subdir, with_temp_dir | ||
|
||
LOG = logging.getLogger("axolotl.tests.e2e") | ||
os.environ["WANDB_DISABLED"] = "true" | ||
|
||
|
||
class TestEmbeddingsLrScale(unittest.TestCase): | ||
""" | ||
Test case for embedding_lr* | ||
""" | ||
|
||
@with_temp_dir | ||
def test_train_w_embedding_lr_scale(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "HuggingFaceTB/SmolLM2-135M", | ||
"flash_attention": True, | ||
"sequence_len": 1024, | ||
"sample_packing": True, | ||
"special_tokens": { | ||
"pad_token": "<|endoftext|>", | ||
}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"max_steps": 5, | ||
"num_epochs": 1, | ||
"micro_batch_size": 1, | ||
"gradient_accumulation_steps": 1, | ||
"val_set_size": 0.0, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"embedding_lr_scale": 0.5, | ||
"lr_scheduler": "cosine", | ||
"save_safetensors": True, | ||
"bf16": "auto", | ||
"use_tensorboard": True, | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "model.safetensors").exists() | ||
|
||
tb_log_path = most_recent_subdir(temp_dir + "/runs") | ||
event_file = os.path.join(tb_log_path, sorted(os.listdir(tb_log_path))[0]) | ||
reader = SummaryReader(event_file) | ||
df = reader.scalars # pylint: disable=invalid-name | ||
df = df[(df.tag == "train/train_loss")] # pylint: disable=invalid-name | ||
assert df.value.values[-1] < 2.0, "Loss is too high" | ||
|
||
@with_temp_dir | ||
def test_train_w_embedding_lr(self, temp_dir): | ||
# pylint: disable=duplicate-code | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "HuggingFaceTB/SmolLM2-135M", | ||
"flash_attention": True, | ||
"sequence_len": 1024, | ||
"sample_packing": True, | ||
"special_tokens": { | ||
"pad_token": "<|endoftext|>", | ||
}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"max_steps": 5, | ||
"num_epochs": 1, | ||
"micro_batch_size": 1, | ||
"gradient_accumulation_steps": 1, | ||
"val_set_size": 0.0, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"embedding_lr": 0.000005, | ||
"lr_scheduler": "cosine", | ||
"save_safetensors": True, | ||
"bf16": "auto", | ||
"use_tensorboard": True, | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "model.safetensors").exists() | ||
|
||
tb_log_path = most_recent_subdir(temp_dir + "/runs") | ||
event_file = os.path.join(tb_log_path, sorted(os.listdir(tb_log_path))[0]) | ||
reader = SummaryReader(event_file) | ||
df = reader.scalars # pylint: disable=invalid-name | ||
df = df[(df.tag == "train/train_loss")] # pylint: disable=invalid-name | ||
assert df.value.values[-1] < 2.0, "Loss is too high" |