Skip to content

Commit

Permalink
refactor(Condensed): redefine condensed abelian groups as condensed `…
Browse files Browse the repository at this point in the history
…ℤ`-modules (leanprover-community#12510)
  • Loading branch information
dagurtomas committed May 1, 2024
1 parent 8390a31 commit 154a87c
Show file tree
Hide file tree
Showing 7 changed files with 84 additions and 101 deletions.
2 changes: 0 additions & 2 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1670,8 +1670,6 @@ import Mathlib.Computability.RegularExpressions
import Mathlib.Computability.TMComputable
import Mathlib.Computability.TMToPartrec
import Mathlib.Computability.TuringMachine
import Mathlib.Condensed.Abelian
import Mathlib.Condensed.Adjunctions
import Mathlib.Condensed.Basic
import Mathlib.Condensed.Discrete
import Mathlib.Condensed.Equivalence
Expand Down
27 changes: 0 additions & 27 deletions Mathlib/Condensed/Abelian.lean

This file was deleted.

36 changes: 0 additions & 36 deletions Mathlib/Condensed/Adjunctions.lean

This file was deleted.

26 changes: 14 additions & 12 deletions Mathlib/Condensed/Explicit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Authors: Dagur Asgeirsson, Riccardo Brasca, Filippo A. E. Nuccio
-/
import Mathlib.CategoryTheory.Sites.Coherent.ExtensiveSheaves
import Mathlib.CategoryTheory.Sites.Coherent.RegularSheaves
import Mathlib.Condensed.Abelian
import Mathlib.Condensed.Module
import Mathlib.Condensed.Equivalence
/-!
Expand Down Expand Up @@ -186,21 +186,23 @@ noncomputable instance (Y : Sheaf (coherentTopology Stonean.{u}) (Type (u+1))) :

end CondensedSet

namespace CondensedAb
namespace CondensedMod

/-- A `CondensedAb` version of `Condensed.ofSheafStonean`. -/
noncomputable abbrev ofSheafStonean (F : Stonean.{u}ᵒᵖ ⥤ AddCommGroupCat.{u+1})
[PreservesFiniteProducts F] : CondensedAb :=
variable (R : Type (u+1)) [Ring R]

/-- A `CondensedMod` version of `Condensed.ofSheafStonean`. -/
noncomputable abbrev ofSheafStonean (F : Stonean.{u}ᵒᵖ ⥤ ModuleCat.{u+1} R)
[PreservesFiniteProducts F] : CondensedMod R :=
Condensed.ofSheafStonean (forget _) F

/-- A `CondensedAb` version of `Condensed.ofSheafProfinite`. -/
noncomputable abbrev ofSheafProfinite (F : Profinite.{u}ᵒᵖ ⥤ AddCommGroupCat.{u+1})
[PreservesFiniteProducts F] (hF : EqualizerCondition (F ⋙ forget _)) : CondensedAb :=
/-- A `CondensedMod` version of `Condensed.ofSheafProfinite`. -/
noncomputable abbrev ofSheafProfinite (F : Profinite.{u}ᵒᵖ ⥤ ModuleCat.{u+1} R)
[PreservesFiniteProducts F] (hF : EqualizerCondition (F ⋙ forget _)) : CondensedMod R :=
Condensed.ofSheafProfinite (forget _) F hF

/-- A `CondensedAb` version of `Condensed.ofSheafCompHaus`. -/
noncomputable abbrev ofSheafCompHaus (F : CompHaus.{u}ᵒᵖ ⥤ AddCommGroupCat.{u+1})
[PreservesFiniteProducts F] (hF : EqualizerCondition (F ⋙ forget _)) : CondensedAb :=
/-- A `CondensedMod` version of `Condensed.ofSheafCompHaus`. -/
noncomputable abbrev ofSheafCompHaus (F : CompHaus.{u}ᵒᵖ ⥤ ModuleCat.{u+1} R)
[PreservesFiniteProducts F] (hF : EqualizerCondition (F ⋙ forget _)) : CondensedMod R :=
Condensed.ofSheafCompHaus (forget _) F hF

end CondensedAb
end CondensedMod
8 changes: 5 additions & 3 deletions Mathlib/Condensed/Limits.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson
-/
import Mathlib.Condensed.Abelian
import Mathlib.Condensed.Module

/-!
Expand All @@ -22,8 +22,10 @@ instance : HasLimits CondensedSet.{u} := by

instance : HasLimitsOfSize.{u} CondensedSet.{u} := hasLimitsOfSizeShrink.{u, u+1, u+1, u} _

instance : HasLimits CondensedAb.{u} := by
variable (R : Type (u+1)) [Ring R]

instance : HasLimits (CondensedMod.{u} R) := by
change HasLimits (Sheaf _ _)
infer_instance

instance : HasLimitsOfSize.{u} CondensedAb.{u} := hasLimitsOfSizeShrink.{u, u+1, u+1, u} _
instance : HasLimitsOfSize.{u} (CondensedMod.{u} R) := hasLimitsOfSizeShrink.{u, u+1, u+1, u} _
48 changes: 45 additions & 3 deletions Mathlib/Condensed/Module.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,23 +6,65 @@ Authors: Dagur Asgeirsson
import Mathlib.Algebra.Category.ModuleCat.Abelian
import Mathlib.Algebra.Category.ModuleCat.Colimits
import Mathlib.Algebra.Category.ModuleCat.FilteredColimits
import Mathlib.Algebra.Category.ModuleCat.Adjunctions
import Mathlib.CategoryTheory.Sites.Abelian
import Mathlib.CategoryTheory.Sites.Adjunction
import Mathlib.CategoryTheory.Sites.LeftExact
import Mathlib.Condensed.Basic
/-!
Condensed modules form an abelian category.
# Condensed `R`-modules
This files defines condensed modules over a ring `R`.
## Main results
* Condensed `R`-modules form an abelian category.
* The forgetful functor from condensed `R`-modules to condensed sets has a left adjoint, sending a
condensed set to the corresponding *free* condensed `R`-module.
-/

universe u

open CategoryTheory

variable (R : Type (u+1)) [Ring R]

/--
The category of condensed `R`-modules, defined as sheaves of `R`-modules over
`CompHaus` with respect to the coherent Grothendieck topology.
-/
abbrev CondensedMod (R : Type (u+1)) [Ring R] := Condensed.{u} (ModuleCat.{u+1} R)
abbrev CondensedMod := Condensed.{u} (ModuleCat.{u+1} R)

noncomputable instance : Abelian (CondensedMod.{u} R) := sheafIsAbelian

/-- The forgetful functor from condensed `R`-modules to condensed sets. -/
def Condensed.forget : CondensedMod R ⥤ CondensedSet := sheafCompose _ (CategoryTheory.forget _)

/--
The left adjoint to the forgetful functor. The *free condensed `R`-module* on a condensed set.
-/
noncomputable
def Condensed.free : CondensedSet ⥤ CondensedMod R :=
Sheaf.composeAndSheafify _ (ModuleCat.free R)

/-- The condensed version of the free-forgetful adjunction. -/
noncomputable
def Condensed.freeForgetAdjunction : free R ⊣ forget R := Sheaf.adjunction _ (ModuleCat.adj R)

/--
The category of condensed abelian groups is defined as condensed `ℤ`-modules.
-/
abbrev CondensedAb := CondensedMod.{u} (ULift ℤ)

noncomputable example : Abelian CondensedAb.{u} := inferInstance

/-- The forgetful functor from condensed abelian groups to condensed sets. -/
abbrev Condensed.abForget : CondensedAb ⥤ CondensedSet := forget _

/-- The free condensed abelian group on a condensed set. -/
noncomputable abbrev Condensed.freeAb : CondensedSet ⥤ CondensedAb := free _

noncomputable instance (R : Type (u+1)) [Ring R] : Abelian (CondensedMod.{u} R) := sheafIsAbelian
/-- The free-forgetful adjunction for condensed abelian groups. -/
noncomputable abbrev Condensed.setAbAdjunction : freeAb ⊣ abForget := freeForgetAdjunction _
38 changes: 20 additions & 18 deletions Mathlib/Condensed/Solid.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,52 +4,54 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson
-/
import Mathlib.CategoryTheory.Limits.KanExtension
import Mathlib.Condensed.Adjunctions
import Mathlib.Condensed.Functors
import Mathlib.Condensed.Limits

/-!
# Solid abelian groups
# Solid modules
This file contains the definition of a solid abelian group: `CondensedAb.isSolid`. Solid abelian
This file contains the definition of a solid `R`-module: `CondensedMod.isSolid R`. Solid modules
groups were introduced in [scholze2019condensed], Definition 5.1.
## Main definition
* `CondensedAb.IsSolid`: the predicate on condensed abelian groups describing the property of being
solid.
* `CondensedMod.IsSolid R`: the predicate on condensed abelian groups describing the property of
being solid.
TODO (hard): prove that `(profiniteSolid.obj S).IsSolid` for `S : Profinite`.
TODO (hard): prove that `((profiniteSolid ℤ).obj S).IsSolid` for `S : Profinite`.
TODO (slightly easier): prove that `((profiniteSolid 𝔽ₚ).obj S).IsSolid` for `S : Profinite`.
-/

universe u

variable (R : Type (u+1)) [Ring R]

open CategoryTheory Limits Profinite Condensed

noncomputable section

namespace Condensed

/-- The free condensed abelian group on a finite set. -/
abbrev finFree : FintypeCat.{u} ⥤ CondensedAb.{u} :=
FintypeCat.toProfinite ⋙ profiniteToCondensed ⋙ freeAb.{u}
abbrev finFree : FintypeCat.{u} ⥤ CondensedMod.{u} R :=
FintypeCat.toProfinite ⋙ profiniteToCondensed ⋙ free R

/-- The free condensed abelian group on a profinite space. -/
abbrev profiniteFree : Profinite.{u} ⥤ CondensedAb.{u} :=
profiniteToCondensed ⋙ freeAb.{u}
abbrev profiniteFree : Profinite.{u} ⥤ CondensedMod.{u} R :=
profiniteToCondensed ⋙ free R

/-- The functor sending a profinite space `S` to the condensed abelian group `[S]^\solid`. -/
def profiniteSolid : Profinite.{u} ⥤ CondensedAb.{u} :=
Ran.loc FintypeCat.toProfinite finFree
/-- The functor sending a profinite space `S` to the condensed abelian group `R[S]^\solid`. -/
def profiniteSolid : Profinite.{u} ⥤ CondensedMod.{u} R :=
Ran.loc FintypeCat.toProfinite (finFree R)

/-- The natural transformation `[S] ⟶ [S]^\solid`. -/
def profiniteSolidification : profiniteFree ⟶ profiniteSolid :=
(Ran.equiv FintypeCat.toProfinite finFree profiniteFree).symm (NatTrans.id _)
/-- The natural transformation `R[S] ⟶ R[S]^\solid`. -/
def profiniteSolidification : profiniteFree R ⟶ profiniteSolid.{u} R :=
(Ran.equiv FintypeCat.toProfinite (finFree R) (profiniteFree R)).symm (NatTrans.id _)

end Condensed

/-- The predicate on condensed abelian groups describing the property of being solid. -/
class CondensedAb.IsSolid (A : CondensedAb.{u}) : Prop where
class CondensedMod.IsSolid (A : CondensedMod.{u} R) : Prop where
isIso_solidification_map : ∀ X : Profinite.{u}, IsIso ((yoneda.obj A).map
(profiniteSolidification.app X).op)
((profiniteSolidification R).app X).op)

0 comments on commit 154a87c

Please sign in to comment.