Skip to content

atinghosh/VAE-pytorch

Repository files navigation

Variational-Autoencoder

Contains code to learn variational autoencoder model on MNIST dataset using pytorch.

L = No. of monte carlo samples for gradient calculation

Gaussian loss is given by

\Large \frac{1}{N}\sum_{i=1}^{N}\left[\frac{1}{L}\sum_{l=1}^{L}\left{ \frac{1}{2}\sum_{j=1}^{784}\log(\sigma_{ij}^{(l)})^2 + \frac{1}{2}\sum_{j=1}^{784}\left(\frac{x_{ij}-\mu_{ij}^{(l)}}   {\sigma_{ij}^{(l)}}\right)^2 \right} \right ]  - \frac{1}{N}\sum_{i=1}^{N}\left[ \sum_{j=1}^{J}\frac{1}{2}\left(1+\log(\sigma_j^{\prime(i)})^2-(\mu_j^{\prime(i)})^2 -(\sigma_j^{\prime(i)})^2\right )\right ]

BCE loss is given by

\Large  \frac{1}{N}\sum_{i=1}^{N}\left[\frac{1}{L}\sum_{l=1}^{L}\left{x_{ij}\log p_{ij}^{(l)} + (1-x_{ij})\log(1-\log p_{ij}^{(l)}) \right} \right ]  - \frac{1}{N}\sum_{i=1}^{N}\left[ \sum_{j=1}^{J}\frac{1}{2}\left(1+\log(\sigma_j^{\prime(i)})^2-(\mu_j^{\prime(i)})^2 -(\sigma_j^{\prime(i)})^2\right )\right ]

About

Variational auto encoder in pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages