Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pickle -> onnx, IsolationForest -> AADForest #356

Merged
merged 5 commits into from
Nov 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .github/workflows/run_test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,8 @@ jobs:
run: |
pip uninstall -y actsnfink
pip install git+https://github.com/emilleishida/fink_sn_activelearning.git@bf8d4e263e02d42781642f872f7bc030c24792bc#egg=actsnfink
pip install onnx==1.12.0
pip install onnxruntime

./run_tests.sh
curl -s https://codecov.io/bash | bash
179 changes: 110 additions & 69 deletions fink_science/anomaly_detection/processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,17 @@
# limitations under the License.
import logging
import os
import pickle
import zipfile

from pyspark.sql.functions import udf
from pyspark.sql.types import DoubleType

import pandas as pd
import numpy as np

from onnx import load
import onnxruntime as rt


from fink_science import __file__
from fink_science.tester import spark_unit_tests
Expand All @@ -43,96 +47,133 @@ def __init__(self, forest_g, forest_r) -> None:
self.forest_g = forest_g

def anomaly_score(self, data_g, data_r):
scores_g = self.forest_g.score_samples(data_g)
scores_r = self.forest_r.score_samples(data_r)
return (scores_g + scores_r) / 2
scores_g = self.forest_g.run(None, {"X": data_g.values.astype(np.float32)})
scores_r = self.forest_r.run(None, {"X": data_r.values.astype(np.float32)})
return (scores_g[-1] + scores_r[-1]) / 2


path = os.path.dirname(os.path.abspath(__file__))
model_path = f"{path}/data/models/anomaly_detection"
g_model_path = f"{model_path}/forest_g.pickle"
r_model_path = f"{model_path}/forest_r.pickle"
g_model_path = f"{model_path}/forest_g.onnx"
r_model_path = f"{model_path}/forest_r.onnx"
g_model_path_AAD = f"{model_path}/forest_g_AAD.onnx"
r_model_path_AAD = f"{model_path}/forest_r_AAD.onnx"
if not (os.path.exists(r_model_path) and os.path.exists(g_model_path)):
# unzip in a tmp place
tmp_path = '/tmp'
g_model_path = f"{tmp_path}/forest_g.pickle"
r_model_path = f"{tmp_path}/forest_r.pickle"
g_model_path = f"{tmp_path}/forest_g.onnx"
r_model_path = f"{tmp_path}/forest_r.onnx"
g_model_path_AAD = f"{tmp_path}/forest_g_AAD.onnx"
r_model_path_AAD = f"{tmp_path}/forest_r_AAD.onnx"
# check it does not exist to avoid concurrent write
if not (os.path.exists(r_model_path) and os.path.exists(g_model_path)):
with zipfile.ZipFile(f"{model_path}/anomaly_detection_forest.zip", 'r') as zip_ref:
zip_ref.extractall(tmp_path)
if not (os.path.exists(g_model_path_AAD) and os.path.exists(r_model_path_AAD)):
with zipfile.ZipFile(f"{model_path}/anomaly_detection_forest_AAD.zip", 'r') as zip_ref:
zip_ref.extractall(tmp_path)

with open(r_model_path, 'rb') as forest_file:
forest_r = pickle.load(forest_file)
with open(g_model_path, 'rb') as forest_file:
forest_g = pickle.load(forest_file)
r_means = pd.read_csv(f"{model_path}/r_means.csv", header=None, index_col=0, squeeze=True)
g_means = pd.read_csv(f"{model_path}/g_means.csv", header=None, index_col=0, squeeze=True)

model = TwoBandModel(forest_g, forest_r)


@udf(returnType=DoubleType())
def anomaly_score(lc_features) -> float:
""" Returns anomaly score for an observation

Parameters
----------
lc_features: Spark Map
Dict of dicts of floats. Keys of first dict - filters (fid), keys of inner dicts - names of features.
class WrapInferenceSession:
"""
The class is an additional wrapper over InferenceSession
to solve the pyspark serialisation problem

Returns
----------
out: float
Anomaly score
https://github.com/microsoft/onnxruntime/pull/800#issuecomment-844326099
"""
def __init__(self, onnx_bytes):
self.sess = rt.InferenceSession(onnx_bytes.SerializeToString())
self.onnx_bytes = onnx_bytes

Examples
---------
>>> from fink_utils.spark.utils import concat_col
>>> from pyspark.sql import functions as F
>>> from fink_science.ad_features.processor import extract_features_ad
def run(self, *args):
return self.sess.run(*args)

>>> df = spark.read.load(ztf_alert_sample)
def __getstate__(self):
return {'onnx_bytes': self.onnx_bytes}

# Required alert columns, concatenated with historical data
>>> what = ['magpsf', 'jd', 'sigmapsf', 'fid', 'distnr', 'magnr', 'sigmagnr', 'isdiffpos']
>>> prefix = 'c'
>>> what_prefix = [prefix + i for i in what]
>>> for colname in what:
... df = concat_col(df, colname, prefix=prefix)
def __setstate__(self, values):
self.onnx_bytes = values['onnx_bytes']
self.sess = rt.InferenceSession(self.onnx_bytes.SerializeToString())

>>> cols = ['cmagpsf', 'cjd', 'csigmapsf', 'cfid', 'objectId', 'cdistnr', 'cmagnr', 'csigmagnr', 'cisdiffpos']
>>> df = df.withColumn('lc_features', extract_features_ad(*cols))
>>> df = df.withColumn("anomaly_score", anomaly_score("lc_features"))

>>> df.filter(df["anomaly_score"] < -0.5).count()
7
forest_r = WrapInferenceSession(load(r_model_path))
forest_g = WrapInferenceSession(load(g_model_path))
forest_r_AAD = WrapInferenceSession(load(r_model_path_AAD))
forest_g_AAD = WrapInferenceSession(load(g_model_path_AAD))

>>> df.filter(df["anomaly_score"] == 0).count()
84

"""
r_means = pd.read_csv(f"{model_path}/r_means.csv", header=None, index_col=0, squeeze=True)
g_means = pd.read_csv(f"{model_path}/g_means.csv", header=None, index_col=0, squeeze=True)

if (
lc_features is None
or len(lc_features) != 2 # noqa: W503 (https://www.flake8rules.com/rules/W503.html, https://www.flake8rules.com/rules/W504.html)
or any(map( # noqa: W503
lambda fs: (fs is None or len(fs) == 0),
lc_features.values()
))
):
return 0.0
if any(map(lambda fid: fid not in lc_features, (1, 2))):
logger.exception(f"Unsupported 'lc_features' format in '{__file__}/{anomaly_score.__name__}'")

data_r, data_g = (
pd.DataFrame.from_dict({k: [v] for k, v in lc_features[i].items()})[MODEL_COLUMNS]
for i in (1, 2)
)
for data, means in ((data_r, r_means), (data_g, g_means)):
for col in data.columns[data.isna().any()]:
data[col].fillna(means[col], inplace=True)
return model.anomaly_score(data_r, data_g)[0].item()
model = TwoBandModel(forest_g, forest_r)
model_AAD = TwoBandModel(forest_g_AAD, forest_r_AAD)


def anomaly_score(lc_features, model_type='AADForest'):
@udf(returnType=DoubleType())
def anomaly_score(lc_features) -> float:
""" Returns anomaly score for an observation

Parameters
----------
lc_features: Spark Map
Dict of dicts of floats. Keys of first dict - filters (fid), keys of inner dicts - names of features.

Returns
----------
out: float
Anomaly score

Examples
---------
>>> from fink_utils.spark.utils import concat_col
>>> from pyspark.sql import functions as F
>>> from fink_science.ad_features.processor import extract_features_ad

>>> df = spark.read.load(ztf_alert_sample)

# Required alert columns, concatenated with historical data
>>> what = ['magpsf', 'jd', 'sigmapsf', 'fid', 'distnr', 'magnr', 'sigmagnr', 'isdiffpos']
>>> prefix = 'c'
>>> what_prefix = [prefix + i for i in what]
>>> for colname in what:
... df = concat_col(df, colname, prefix=prefix)

>>> cols = ['cmagpsf', 'cjd', 'csigmapsf', 'cfid', 'objectId', 'cdistnr', 'cmagnr', 'csigmagnr', 'cisdiffpos']
>>> df = df.withColumn('lc_features', extract_features_ad(*cols))
>>> df = df.withColumn("anomaly_score", anomaly_score("lc_features"))

>>> df.filter(df["anomaly_score"] < -0.5).count()
7

>>> df.filter(df["anomaly_score"] == 0).count()
84

"""

if (
lc_features is None
or len(lc_features) != 2 # noqa: W503 (https://www.flake8rules.com/rules/W503.html, https://www.flake8rules.com/rules/W504.html)
or any(map( # noqa: W503
lambda fs: (fs is None or len(fs) == 0),
lc_features.values()
))
):
return 0.0
if any(map(lambda fid: fid not in lc_features, (1, 2))):
logger.exception(f"Unsupported 'lc_features' format in '{__file__}/{anomaly_score.__name__}'")

data_r, data_g = (
pd.DataFrame.from_dict({k: [v] for k, v in lc_features[i].items()})[MODEL_COLUMNS]
for i in (1, 2)
)
for data, means in ((data_r, r_means), (data_g, g_means)):
for col in data.columns[data.isna().any()]:
data[col].fillna(means[col], inplace=True)
if model_type == 'AADForest':
return model_AAD.anomaly_score(data_r, data_g)[0].item()
return model.anomaly_score(data_r, data_g)[0].item()
return anomaly_score(lc_features)


if __name__ == "__main__":
Expand Down
Binary file not shown.
Binary file not shown.
17 changes: 9 additions & 8 deletions fink_science/data/models/anomaly_detection/g_means.csv
Original file line number Diff line number Diff line change
@@ -1,18 +1,19 @@
,0
amplitude,0.21948567063093466
anderson_darling_normal,0.5738338537540897
beyond_1_std,0.2975957082645236
beyond_1_std,0.29759570826452364
chi2,37.704414101216535
cusum,0.3407494402523421
kurtosis,0.29150516293433526
linear_fit_slope,0.0008679869820436599
linear_fit_slope_sigma,0.002219643796867781
linear_trend_noise,0.1395519301423175
linear_trend_sigma,0.006530832951936918
kurtosis,0.2915051629343353
linear_fit_slope,0.0008679869820436663
linear_fit_slope_sigma,0.002219643796867831
linear_trend_noise,0.13955193014231754
linear_trend_sigma,0.006530832951936966
magnitude_percentage_ratio_20_10,0.7096091060287604
magnitude_percentage_ratio_40_5,0.21345309681339728
magnitude_percentage_ratio_40_5,0.2134530968133973
maximum_slope,20.197335141851806
median,16.09982754358941
median_absolute_deviation,0.07874299095497293
median_absolute_deviation,0.07874299095497296
median_buffer_range_percentage_10,0.226612517162576
skew,0.06777187504700471
stetson_K,0.853534164617388
19 changes: 10 additions & 9 deletions fink_science/data/models/anomaly_detection/r_means.csv
Original file line number Diff line number Diff line change
@@ -1,18 +1,19 @@
amplitude,0.27761581012726816
,0
amplitude,0.2776158101272682
anderson_darling_normal,0.6324932481221309
beyond_1_std,0.2984203432923638
beyond_1_std,0.29842034329236383
chi2,47.98632140376363
cusum,0.3353034770643174
kurtosis,0.19552357158753803
linear_fit_slope,0.0004677950689235035
linear_fit_slope_sigma,0.004115135468353454
linear_trend_noise,0.17699726764662013
linear_trend_sigma,0.008118738252789526
linear_fit_slope,0.00046779506892350695
linear_fit_slope_sigma,0.004115135468353504
linear_trend_noise,0.17699726764662016
linear_trend_sigma,0.008118738252789576
magnitude_percentage_ratio_20_10,0.7110312348018119
magnitude_percentage_ratio_40_5,0.2119754721716743
magnitude_percentage_ratio_40_5,0.21197547217167437
maximum_slope,27.23340912206943
median,17.306199665913482
median_absolute_deviation,0.09875090359331291
median_buffer_range_percentage_10,0.22553694294088789
median_absolute_deviation,0.09875090359331296
median_buffer_range_percentage_10,0.22553694294088797
skew,0.022823198234573093
stetson_K,0.8580286805997064
Loading