Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Investigating possible memory leak #58

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions examples/MEMORY.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
I ran several simulations from the command line for reps `$NSIM = 1 10 100 1000 20000`, using the command:

```sh
/usr/bin/time -v python examples.py -T 21 -N 100 -r 0.01 -l 10 -k 10 -n $NSIM
```

I recorded the maximum resident size in `memory.tsv`. The data:

```sh
reps max_memory_kbytes
1 54380
10 62216
100 88468
1000 354252
2000 657656
```

Although the script calls a function that both exits and includes `del pop` and
`del rc`, the data (i.e., comparing the memory use from 1000 to 2000 reps)
indicate that total memory use increases linearly with the number of reps.

## More
the provenance output by the script was

```python
Namespace(chrom_length=100, gamma_alpha=0.23, gamma_beta=5.34, generations=20, logfile='-', neut_mut_rate=1e-07, nsamples=10, nselloci=10, nsims=2000, outfile=None, popsize=100, recomb_rate=0.01, sel_mut_rate=1e-07, selloci_file='sel_loci.txt', simplify_interval=500, treefile=None)
```
308 changes: 157 additions & 151 deletions examples/examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,46 +12,6 @@
from ftprime import RecombCollector
import msprime

REPORTING_STEP = 50

parser = ArgumentParser(description=description)
parser.add_argument("-T","--generations", dest="generations", type=int,
help="number of generations to run for")
parser.add_argument("-N","--popsize", dest="popsize", type=int,
help="size of the population", default=100)
parser.add_argument("-r","--recomb_rate", dest="recomb_rate", type=float,
help="recombination rate", default=1e-7)
parser.add_argument("-L","--length", dest="chrom_length", type=int,
help="number of bp in the chromosome", default=100)
parser.add_argument("-U","--neut_mut_rate", dest="neut_mut_rate", type=float,
help="neutral mutation rate", default=1e-7)
parser.add_argument("-l","--nselloci", dest="nselloci", type=int,
help="number of selected loci", default=1)
parser.add_argument("-u","--sel_mut_rate", dest="sel_mut_rate", type=float,
help="mutation rate of selected alleles", default=1e-7)
parser.add_argument("-a","--gamma_alpha", dest="gamma_alpha", type=float,
help="alpha parameter in gamma distributed selection coefficient", default=.23)
parser.add_argument("-b","--gamma_beta", dest="gamma_beta", type=float,
help="beta parameter in gamma distributed selection coefficient", default=5.34)
parser.add_argument("-k","--nsamples", dest="nsamples", type=int,
help="number of *diploid* samples, total", default=100)
parser.add_argument("-o","--outfile", dest="outfile", type=str,
help="name of output PED file (default: not output)", default=None)
parser.add_argument("--gc", "-G", dest="simplify_interval", type=int,
help="Interval between simplify steps.", default=500)
parser.add_argument("-g","--logfile", dest="logfile", type=str,
help="name of log file (or '-' for stdout)", default="-")
parser.add_argument("-s","--selloci_file", dest="selloci_file", type=str,
help="name of file to output selected locus information", default="sel_loci.txt")
parser.add_argument("--treefile","-t", type=str, dest="treefile",
help="name of output file for trees (default: not output)",default=None)

args = parser.parse_args()

if args.generations is None:
parser.print_help()
sys.exit()

# some simupop options involving mutation type
import simuOpt
simuOpt.setOptions(alleleType='mutant')
Expand All @@ -74,29 +34,6 @@ def fileopt(fname,opts):
fobj = open(fname,opts)
return fobj

logfile = fileopt(args.logfile, "w")
selloci_file = args.selloci_file

logfile.write("Options:\n")
logfile.write(str(args)+"\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

# locations of the loci along the chromosome?
# hard code defaults for simupop:
# >The default positions are 1, 2, 3, 4, ... on each
# >chromosome.
locus_position = list(range(0, args.chrom_length))

# which loci are under selection?
selected_loci = math.ceil(args.chrom_length / 2)
try:
sl = set(selected_loci)
except TypeError:
sl = set((selected_loci, ))
neutral_loci = list(set(range(1,args.chrom_length)) - sl)

###
# random selection coefficients:
# modified from http://simupop.sourceforge.net/manual_svn/build/userGuide_ch5_sec9.html
Expand All @@ -122,91 +59,160 @@ def __call__(self, loc, alleles):
return 1. - s
else:
return 1. - 2.*s

pop = sim.Population(
size=args.popsize,
loci=[args.chrom_length],
lociPos=locus_position,
infoFields=['ind_id','fitness'])


# set up recomb collector
# NB: we have to simulate an initial tree sequence
id_tagger = sim.IdTagger()
id_tagger.apply(pop)
first_gen = pop.indInfo("ind_id")
init_ts = msprime.simulate(2*len(first_gen),
length=max(locus_position))
haploid_labels = [(k,p) for k in first_gen
for p in (0,1)]
node_ids = {x:j for x, j in zip(haploid_labels, init_ts.samples())}
rc = RecombCollector(ts=init_ts, node_ids=node_ids,
locus_position=locus_position)

# initially, population is monogenic
init_geno=[sim.InitGenotype(freq=1.0)]

pop.evolve(
initOps=[
sim.InitSex(),
]+init_geno,
preOps=[
sim.PyOperator(lambda pop: rc.increment_time() or True),
sim.SNPMutator(u=args.neut_mut_rate,v=0,loci=neutral_loci),
sim.SNPMutator(u=args.sel_mut_rate,v=0,loci=selected_loci),
sim.PyMlSelector(GammaDistributedFitness(args.gamma_alpha, args.gamma_beta),
loci=selected_loci, output=">>"+selloci_file),
],
matingScheme=sim.RandomMating(
ops=[
id_tagger,
sim.Recombinator(rates=args.recomb_rate, output=rc.collect_recombs,
infoFields="ind_id"),
] ),
postOps=[
sim.Stat(numOfSegSites=sim.ALL_AVAIL, step=REPORTING_STEP,
vars=['numOfSegSites', 'numOfFixedSites']),
sim.PyEval(r"'Gen: %2d #seg/#fixed sites: %d / %d\n' % (gen, numOfSegSites, numOfFixedSites)", step=REPORTING_STEP),
sim.PyOperator(lambda pop: rc.simplify(pop.indInfo("ind_id")) or True,
step=args.simplify_interval),
],
gen = args.generations
)

logfile.write("Done simulating!\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

logfile.write("Collecting samples:\n")
logfile.write(" " + str(args.nsamples) + " of them")
# logfile.write(" " + "ids:" + str(pop.indInfo("ind_id")))

diploid_samples = random.sample(pop.indInfo("ind_id"), args.nsamples)
rc.simplify(diploid_samples)

del pop

logfile.write("Samples:\n")
#logfile.write(str(rc.diploid_samples)+"\n")
logfile.write("----------\n")
logfile.flush()

ts = rc.args.tree_sequence()
del rc

logfile.write("Loaded into tree sequence!\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

if args.treefile is not None:
ts.dump(args.treefile)

logfile.write("Writing out samples.\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

logfile.write("All done!\n")
logfile.close()
def run(args):
logfile = fileopt(args.logfile, "w")
selloci_file = args.selloci_file

logfile.write("Options:\n")
logfile.write(str(args)+"\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

# locations of the loci along the chromosome?
# hard code defaults for simupop:
# >The default positions are 1, 2, 3, 4, ... on each
# >chromosome.
locus_position = list(range(0, args.chrom_length))

# which loci are under selection?
selected_loci = math.ceil(args.chrom_length / 2)
try:
sl = set(selected_loci)
except TypeError:
sl = set((selected_loci, ))
neutral_loci = list(set(range(1,args.chrom_length)) - sl)

pop = sim.Population(
size=args.popsize,
loci=[args.chrom_length],
lociPos=locus_position,
infoFields=['ind_id','fitness'])


# set up recomb collector
# NB: we have to simulate an initial tree sequence
id_tagger = sim.IdTagger()
id_tagger.apply(pop)
first_gen = pop.indInfo("ind_id")
init_ts = msprime.simulate(2*len(first_gen),
length=max(locus_position))
haploid_labels = [(k,p) for k in first_gen
for p in (0,1)]
node_ids = {x:j for x, j in zip(haploid_labels, init_ts.samples())}
rc = RecombCollector(ts=init_ts, node_ids=node_ids,
locus_position=locus_position)

# initially, population is monogenic
init_geno=[sim.InitGenotype(freq=1.0)]

pop.evolve(
initOps=[
sim.InitSex(),
]+init_geno,
preOps=[
sim.PyOperator(lambda pop: rc.increment_time() or True),
sim.SNPMutator(u=args.neut_mut_rate,v=0,loci=neutral_loci),
sim.SNPMutator(u=args.sel_mut_rate,v=0,loci=selected_loci),
sim.PyMlSelector(GammaDistributedFitness(args.gamma_alpha, args.gamma_beta),
loci=selected_loci, output=">>"+selloci_file),
],
matingScheme=sim.RandomMating(
ops=[
id_tagger,
sim.Recombinator(rates=args.recomb_rate, output=rc.collect_recombs,
infoFields="ind_id"),
] ),
postOps=[
sim.Stat(numOfSegSites=sim.ALL_AVAIL, step=REPORTING_STEP,
vars=['numOfSegSites', 'numOfFixedSites']),
sim.PyEval(r"'Gen: %2d #seg/#fixed sites: %d / %d\n' % (gen, numOfSegSites, numOfFixedSites)", step=REPORTING_STEP),
sim.PyOperator(lambda pop: rc.simplify(pop.indInfo("ind_id")) or True,
step=args.simplify_interval),
],
gen = args.generations
)

logfile.write("Done simulating!\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

logfile.write("Collecting samples:\n")
logfile.write(" " + str(args.nsamples) + " of them")
# logfile.write(" " + "ids:" + str(pop.indInfo("ind_id")))

diploid_samples = random.sample(pop.indInfo("ind_id"), args.nsamples)
rc.simplify(diploid_samples)

del pop

logfile.write("Samples:\n")
#logfile.write(str(rc.diploid_samples)+"\n")
logfile.write("----------\n")
logfile.flush()

ts = rc.args.tree_sequence()
del rc

logfile.write("Loaded into tree sequence!\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

if args.treefile is not None:
ts.dump(args.treefile)

logfile.write("Writing out samples.\n")
logfile.write(time.strftime('%X %x %Z')+"\n")
logfile.write("----------\n")
logfile.flush()

logfile.write("All done!\n")

if __name__ == '__main__':

REPORTING_STEP = 50

parser = ArgumentParser(description=description)
parser.add_argument("-T","--generations", dest="generations", type=int,
help="number of generations to run for")
parser.add_argument("-N","--popsize", dest="popsize", type=int,
help="size of the population", default=100)
parser.add_argument("-r","--recomb_rate", dest="recomb_rate", type=float,
help="recombination rate", default=1e-7)
parser.add_argument("-L","--length", dest="chrom_length", type=int,
help="number of bp in the chromosome", default=100)
parser.add_argument("-U","--neut_mut_rate", dest="neut_mut_rate", type=float,
help="neutral mutation rate", default=1e-7)
parser.add_argument("-l","--nselloci", dest="nselloci", type=int,
help="number of selected loci", default=1)
parser.add_argument("-u","--sel_mut_rate", dest="sel_mut_rate", type=float,
help="mutation rate of selected alleles", default=1e-7)
parser.add_argument("-a","--gamma_alpha", dest="gamma_alpha", type=float,
help="alpha parameter in gamma distributed selection coefficient", default=.23)
parser.add_argument("-b","--gamma_beta", dest="gamma_beta", type=float,
help="beta parameter in gamma distributed selection coefficient", default=5.34)
parser.add_argument("-k","--nsamples", dest="nsamples", type=int,
help="number of *diploid* samples, total", default=100)
parser.add_argument("-o","--outfile", dest="outfile", type=str,
help="name of output PED file (default: not output)", default=None)
parser.add_argument("--gc", "-G", dest="simplify_interval", type=int,
help="Interval between simplify steps.", default=500)
parser.add_argument("-g","--logfile", dest="logfile", type=str,
help="name of log file (or '-' for stdout)", default="-")
parser.add_argument("-s","--selloci_file", dest="selloci_file", type=str,
help="name of file to output selected locus information", default="sel_loci.txt")
parser.add_argument("--treefile","-t", type=str, dest="treefile",
help="name of output file for trees (default: not output)",default=None)
parser.add_argument("--nsim","-n", type=int, dest="nsims",
help="repetitions",default=1)

args = parser.parse_args()

if args.generations is None:
parser.print_help()
sys.exit()

for _ in range(args.nsims):
run(args)
6 changes: 6 additions & 0 deletions examples/memory.tsv
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
reps max_memory_kbytes
1 54380
10 62216
100 88468
1000 354252
2000 657656