Skip to content

Vertex Centric Indices

Dan LaRocque edited this page Jul 24, 2013 · 13 revisions

A vertex-centric index is specific to a vertex. Such indices are contrary to graph indices which are global to the graph (i.e. indexing elements for fast global lookups). The purpose of vertex-centric indices is to sort and index the incident edges (and thus, adjacent vertices) of a vertex according to the incident edges’ labels and properties. Given a vertex query, these indices are leveraged and, in doing so, linear scans of incident edges (O(n)) can be avoided and faster graph traversals ensue (O(1) or O(log n)). With traversals typically touching numerous vertices, the combinatoric expense of linear scans can bring a graph database to a halt. For more information on setting up vertex-centric indices, please see primaryKey() in Type Definition Overview. Finally, note that vertex-centric indices overcome the infamous super node problem found in many graph systems.

Real-World Benefits

Assume 4 vertices each with 1k, 10k, 100k, and 1 million incident edges. Each edge represents a person tweeting a particular tweet vertex. Moreover, each edge has a long timestamp property on it. The Gremlin Groovy code to create the 4 vertices and their respective edge sets is provided below, where the distinction between an index or not is the declaration of a primaryKey(time) on an edge label.

g = TitanFactory.open(conf)
// graph schema construction
g.makeType().name('name').unique(OUT).dataType(String.class).indexed(Vertex.class).makePropertyKey()
time = g.makeType().name('time').unique(OUT).dataType(Long.class).makePropertyKey()
if(useVertexCentricIndices)
  g.makeType().name('tweets').primaryKey(time).makeEdgeLabel()
else 
  g.makeType().name('tweets').makeEdgeLabel()
g.commit()

// graph instance construction
g.addVertex([name:'v1000']);
g.addVertex([name:'v10000']);
g.addVertex([name:'v100000']);
g.addVertex([name:'v1000000']);

for(i=1000; i<1000001; i=i*10) {
  v = g.V('name','v' + i).next();
  (1..i).each {
    v.addEdge('tweets',g.addVertex(),[time:it])
    if(it % 10000 == 0) g.commit()
  }; g.commit()
}

Next, a query for the top 10 most recently tweeted adjacent vertices is enacted, where recency is defined by the long timestamp on the adjoining edge. If the vertices don’t have vertex-centric indices, the query time grows by an order of magnitude to an order of magnitude increase in data size — a near perfect relationship. With vertex-centric indices, runtimes are unaffected by the growth of the data size. The micro-benchmark results below are using Titan Server (Cassandra embedded) and the concluding code fragment.

incident edge size no vertex-centric indices vertex-centric indices
1000 0.82 ms 0.50 ms
10000 7.06 ms 0.52 ms
100000 70.90 ms 0.46 ms
1000000 778.94 ms 0.46 ms
totalRuns = 50
for(i=1000; i<1000001; i=i*10) {
  v = g.V('name','v' + i).next();
  totalTime = 0
  (1..totalRuns).each {
    t = System.currentTimeMillis();
    v.outE('tweets').has('time',T.gt,i-10).inV.iterate()
    totalTime += System.currentTimeMillis() - t;
  }; null
  System.out.println(i + ':' + totalTime / totalRuns);
}