-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #29 from arnaudbergeron/feature/parallelEq
added module to create eq in parallel
- Loading branch information
Showing
1 changed file
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
from __future__ import annotations | ||
|
||
import multiprocessing as mp | ||
import os | ||
|
||
import sympy as sp | ||
import torch | ||
|
||
from NumGI.DatasetTokenizer import DatasetTokenizer | ||
from NumGI.EquationTokenizer import EquationTokenizer | ||
from NumGI.SolutionGenerator import SolutionGenerator | ||
|
||
|
||
def worker(args): | ||
sols = args[0].generate_solution_dataset(*args[1:-1]) | ||
generate_tokenized_lists(sols, args[-1]) | ||
return [args[-1]] | ||
|
||
|
||
def generate_tokenized_lists(sols, num): | ||
"""Generates tokenized lists of equations and solutions. Saves them to disk.""" | ||
x = [] | ||
y = [] | ||
for i in sols: | ||
if not isinstance(i[1], sp.logic.boolalg.BooleanTrue) and not isinstance( | ||
i[1], sp.logic.boolalg.BooleanFalse | ||
): | ||
x.append(i[0]) | ||
y.append(i[1]) | ||
|
||
tok = EquationTokenizer() | ||
y_list = [tok.sympy_to_list(i) for i in y] | ||
x_nozoo = [] | ||
y_nozoo = [] | ||
for idx, i in enumerate(y_list): | ||
if len(i) < 5_000: | ||
if "zoo" not in [str(j) for j in i]: | ||
x_nozoo.append(x[idx]) | ||
y_nozoo.append(y[idx]) | ||
|
||
dataset = DatasetTokenizer(x_nozoo, y_nozoo, useDefaultTokenizer=True) | ||
|
||
torch.save(dataset.x_tokenized, f"data/new_sol_generator/x_{num}.pt") | ||
torch.save(dataset.y_tokenized, f"data/new_sol_generator/y_{num}.pt") | ||
|
||
|
||
def generate_eq_parallel(gen_args: list, path: str, num_thousands: int): | ||
"""Generates equations in parallel. | ||
Note some equations will be discarded because they are too long. | ||
This won't create the exact number of expected equations. | ||
Args: | ||
path (str): path to save the equations to | ||
num_thousands (int): number of thousands of equations to generate | ||
""" | ||
pool = mp.Pool(mp.cpu_count() - 1) | ||
shift = 0 | ||
solgen = SolutionGenerator() | ||
|
||
for i in os.listdir(path): | ||
new_i = (i.split("_")[1]).split(".")[0] | ||
shift = max(int(new_i), shift) | ||
|
||
shift += 1 | ||
# Define the parameters for each call to generate_solution_dataset | ||
parameters = [([solgen] + gen_args + [shift + _]) for _ in range(num_thousands)] | ||
|
||
pool.map(worker, parameters) | ||
|
||
|
||
if __name__ == "__main__": | ||
diff_func = [ | ||
sp.sin, | ||
sp.cos, | ||
sp.tan, | ||
sp.cot, | ||
sp.sec, | ||
sp.csc, | ||
sp.exp, | ||
sp.log, | ||
sp.sqrt, | ||
sp.asin, | ||
sp.acos, | ||
sp.atan, | ||
sp.acot, | ||
sp.asec, | ||
sp.acsc, | ||
sp.sinh, | ||
sp.cosh, | ||
sp.tanh, | ||
sp.coth, | ||
sp.sech, | ||
sp.csch, | ||
sp.asinh, | ||
sp.acosh, | ||
sp.atanh, | ||
sp.acoth, | ||
sp.asech, | ||
sp.acsch, | ||
] | ||
ops = [ | ||
("multiplication", "arithmetic"), | ||
("addition", "arithmetic"), | ||
("subtraction", "arithmetic"), | ||
("division", "arithmetic"), | ||
("differential", "differential"), | ||
("exponent", "exponent"), | ||
] | ||
vars = ["x", "y", "z", "beta", "gamma", "delta", "a", "b", "c", "d", "epsilon"] | ||
gen_args = [ | ||
(3, 10), | ||
(3, 5), | ||
1_00, | ||
vars, | ||
diff_func, | ||
ops, | ||
] | ||
generate_eq_parallel(gen_args, "data/new_sol_generator", 5) |