Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add field square root algorithms Shanks, Atkin, and Kong #579

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,8 @@ This library comes with comprehensive unit and integration tests for each of the
cargo test --all
```

Note that this leaves out some tests that would be run in individual crates (e.g. `test-curves`) under `cargo test --all-features`.

## Benchmarks

To run the benchmarks, install the nightly Rust toolchain, via `rustup install nightly`, and then run the following command:
Expand Down
2 changes: 1 addition & 1 deletion ff/src/fields/models/fp/montgomery_backend.rs
Original file line number Diff line number Diff line change
Expand Up @@ -545,7 +545,7 @@ pub const fn sqrt_precomputation<const N: usize, T: MontConfig<N>>(
) -> Option<SqrtPrecomputation<Fp<MontBackend<T, N>, N>>> {
match T::MODULUS.mod_4() {
3 => match T::MODULUS_PLUS_ONE_DIV_FOUR.as_ref() {
Some(BigInt(modulus_plus_one_div_four)) => Some(SqrtPrecomputation::Case3Mod4 {
Some(BigInt(modulus_plus_one_div_four)) => Some(SqrtPrecomputation::PowerCase3Mod4 {
modulus_plus_one_div_four,
}),
None => None,
Expand Down
296 changes: 234 additions & 62 deletions ff/src/fields/sqrt.rs
Original file line number Diff line number Diff line change
Expand Up @@ -65,14 +65,49 @@ impl LegendreSymbol {
/// the corresponding condition.
#[non_exhaustive]
pub enum SqrtPrecomputation<F: crate::Field> {
// Tonelli-Shanks algorithm works for all elements, no matter what the modulus is.
/// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5).
/// Tonelli-Shanks algorithm works for all elements, no matter what the modulus is.
/// With _q_ as field order, _p_ as characteristic, and _m_ as extension degree:
/// * First factor _q - 1 = 2^s t_ where _t_ is odd.
/// * `two_adicity` - _s_.
/// * `quadratic_nonresidue_to_trace` - _c^t_, with random _c_ such that _c^2^(s - 1) = 1_.
/// * `trace_of_modulus_minus_one_div_two` - _(t - 1)/2_.
TonelliShanks {
two_adicity: u32,
quadratic_nonresidue_to_trace: F,
trace_of_modulus_minus_one_div_two: &'static [u64],
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just realized my naming is a bit inconsistent with some existing names, this says modulus but I say characteristic. I feel like "characteristic" is more accurate though. Let me know if you think that should be changed.

},
/// To be used when the modulus is 3 mod 4.
Case3Mod4 {
/// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2).
/// With _q_ as field order, _p_ as characteristic, and _m_ as extension degree:
/// * `char_minus_three_div_four` - _(p - 3)/4_.
ShanksCase3Mod4 {
char_minus_three_div_four: &'static [u64],
},
/// https://eprint.iacr.org/2012/685.pdf (page 10, algorithm 3).
/// With _q_ as field order, _p_ as characteristic, and _m_ as extension degree:
/// * `trace` - _2^(q - 5)/8_.
/// * `char_minus_five_div_eight` - _(p - 5)/8_.
AtkinCase5Mod8 {
trace: F,
char_minus_five_div_eight: &'static [u64],
},
/// https://eprint.iacr.org/2012/685.pdf (page 11, algorithm 4).
/// With _q_ as field order, _p_ as characteristic, and _m_ as extension degree:
/// * `trace` - _2^(q - 9)/16_.
/// * `c` - nonzero value such that _chi_q(c) != 1_.
/// * `d` - _c^(q - 9)/8_.
/// * `c_squared` - _c^2_.
/// * `char_minus_nine_div_sixteen` - _(p - 9)/16_.
KongCase9Mod16 {
trace: F,
c: F,
d: F,
c_squared: F,
char_minus_nine_div_sixteen: &'static [u64],
},
/// In the case of 3 mod 4, we can find the square root via an exponentiation,
/// sqrt(a) = a^(p+1)/4. This can be proved using Euler's criterion, a^(p-1)/2 = 1 mod p.
PowerCase3Mod4 {
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Didn't find any name for this algorithm so I just called it "power"

modulus_plus_one_div_four: &'static [u64],
},
}
Expand All @@ -84,66 +119,203 @@ impl<F: crate::Field> SqrtPrecomputation<F> {
two_adicity,
quadratic_nonresidue_to_trace,
trace_of_modulus_minus_one_div_two,
} => {
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
// Actually this is just normal Tonelli-Shanks; since `P::Generator`
// is a quadratic non-residue, `P::ROOT_OF_UNITY = P::GENERATOR ^ t`
// is also a quadratic non-residue (since `t` is odd).
if elem.is_zero() {
return Some(F::zero());
}
// Try computing the square root (x at the end of the algorithm)
// Check at the end of the algorithm if x was a square root
// Begin Tonelli-Shanks
let mut z = *quadratic_nonresidue_to_trace;
let mut w = elem.pow(trace_of_modulus_minus_one_div_two);
let mut x = w * elem;
let mut b = x * &w;

let mut v = *two_adicity as usize;

while !b.is_one() {
let mut k = 0usize;

let mut b2k = b;
while !b2k.is_one() {
// invariant: b2k = b^(2^k) after entering this loop
b2k.square_in_place();
k += 1;
}

if k == (*two_adicity as usize) {
// We are in the case where self^(T * 2^k) = x^(P::MODULUS - 1) = 1,
// which means that no square root exists.
return None;
}
let j = v - k;
w = z;
for _ in 1..j {
w.square_in_place();
}

z = w.square();
b *= &z;
x *= &w;
v = k;
}
// Is x the square root? If so, return it.
if x.square() == *elem {
Some(x)
} else {
// Consistency check that if no square root is found,
// it is because none exists.
debug_assert!(!matches!(elem.legendre(), LegendreSymbol::QuadraticResidue));
None
}
},
Self::Case3Mod4 {
} => tonelli_shanks(
elem,
two_adicity,
quadratic_nonresidue_to_trace,
trace_of_modulus_minus_one_div_two,
),
SqrtPrecomputation::ShanksCase3Mod4 {
char_minus_three_div_four,
} => shanks(elem, char_minus_three_div_four),
SqrtPrecomputation::AtkinCase5Mod8 {
trace,
char_minus_five_div_eight,
} => atkin(elem, trace, char_minus_five_div_eight),
SqrtPrecomputation::KongCase9Mod16 {
trace,
c,
d,
c_squared,
char_minus_nine_div_sixteen,
} => kong(elem, trace, c, d, c_squared, char_minus_nine_div_sixteen),
Self::PowerCase3Mod4 {
modulus_plus_one_div_four,
} => {
let result = elem.pow(modulus_plus_one_div_four.as_ref());
(result.square() == *elem).then_some(result)
},
} => power_case_three_mod_four(elem, modulus_plus_one_div_four),
}
}
}

fn tonelli_shanks<F: crate::Field>(
elem: &F,
two_adicity: &u32,
quadratic_nonresidue_to_trace: &F,
trace_of_modulus_minus_one_div_two: &[u64],
) -> Option<F> {
// Actually this is just normal Tonelli-Shanks; since `P::Generator`
// is a quadratic non-residue, `P::ROOT_OF_UNITY = P::GENERATOR ^ t`
// is also a quadratic non-residue (since `t` is odd).
if elem.is_zero() {
return Some(F::zero());
}
// Try computing the square root (x at the end of the algorithm)
// Check at the end of the algorithm if x was a square root
// Begin Tonelli-Shanks
let mut z = *quadratic_nonresidue_to_trace;
let mut w = elem.pow(trace_of_modulus_minus_one_div_two);
let mut x = w * elem;
let mut b = x * &w;

let mut v = *two_adicity as usize;

while !b.is_one() {
let mut k = 0usize;

let mut b2k = b;
while !b2k.is_one() {
// invariant: b2k = b^(2^k) after entering this loop
b2k.square_in_place();
k += 1;
}

if k == (*two_adicity as usize) {
// We are in the case where self^(T * 2^k) = x^(P::MODULUS - 1) = 1,
// which means that no square root exists.
return None;
}
let j = v - k;
w = z;
for _ in 1..j {
w.square_in_place();
}

z = w.square();
b *= &z;
x *= &w;
v = k;
}
// Is x the square root? If so, return it.
if x.square() == *elem {
Some(x)
} else {
// Consistency check that if no square root is found,
// it is because none exists.
debug_assert!(!matches!(elem.legendre(), LegendreSymbol::QuadraticResidue));
None
}
}

fn shanks<F: crate::Field>(elem: &F, char_minus_three_div_four: &[u64]) -> Option<F> {
// Computing a1 = Using decomposition of (q-3)/4 = a + p[pa + (3a+2)] * sum_i=1^(m-3)/2 p^2i
// where a = (p - 3) / 4.
// factor1 = elem^a
let factor1 = elem.pow(char_minus_three_div_four);
// elem_to_p = elem^p
let elem_to_p = elem.frobenius_map(1);
// factor2_base = elem^(p^2)a * elem^3pa * elem^2p
let factor2_base = elem_to_p.frobenius_map(1).pow(char_minus_three_div_four)
* elem_to_p.pow(&[3u64]).pow(char_minus_three_div_four)
* elem_to_p.square();
// factor2 = prod_i=1^(m-3)/2 factor2_base^(p^2i)
let mut factor2 = F::one();
let n = (F::extension_degree() as usize - 3) / 2;
for i in 1..(n + 1) {
factor2 *= factor2_base.frobenius_map(i * 2);
}
let a1 = factor1 * factor2;

let a1_elem = a1 * elem;
let a0 = a1 * a1_elem;
if a0 == -F::one() {
return None;
}

Some(a1_elem)
}

fn atkin<F: crate::Field>(elem: &F, trace: &F, char_minus_five_div_eight: &[u64]) -> Option<F> {
// Computing a1 = elem^(q-5)/8 using decomposition of
// (q-5)/8 = a + p[pa + (5a+3)] * sum_i=1^(m-3)/2 p^2i
// where a = (p - 5) / 8.
// factor1 = elem^a
let factor1 = elem.pow(char_minus_five_div_eight);
// elem_to_p = elem^p
let elem_to_p = elem.frobenius_map(1);
// factor2_base = elem^(p^2)a * elem^5pa * elem^3p
let factor2_base = elem_to_p.frobenius_map(1).pow(char_minus_five_div_eight)
* elem_to_p.pow(&[5u64]).pow(char_minus_five_div_eight)
* elem_to_p.pow(&[3u64]);
// factor2 = prod_i=1^(m-3)/2 factor2_base^(p^2i)
let mut factor2 = F::one();
let n = (F::extension_degree() as usize - 3) / 2;
for i in 1..(n + 1) {
factor2 *= factor2_base.frobenius_map(i * 2);
}
let a1 = factor1 * factor2;

let a0 = (a1.square() * elem).square();
if a0 == -F::one() {
return None;
}

let b = a1 * trace;
let elem_b = b * elem;
let i = elem_b.double() * b;
let x = elem_b * (i - F::one());

Some(x)
}

fn kong<F: crate::Field>(
elem: &F,
trace: &F,
c: &F,
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I didn't know if this variable had a name

d: &F,
alexander-zw marked this conversation as resolved.
Show resolved Hide resolved
c_squared: &F,
char_minus_nine_div_sixteen: &[u64],
) -> Option<F> {
// Using decomposition of (q-9)/16 = a + p[pa + (9a+5)] * sum_i=1^(m-3)/2 p^2i
// a = (p - 9) / 16
// factor1 = elem^a
let factor1 = elem.pow(char_minus_nine_div_sixteen);
// elem_to_p = elem^p
let elem_to_p = elem.frobenius_map(1);
// factor2_base = elem^(p^2)a * elem^9pa * elem^5p
let factor2_base = elem_to_p.frobenius_map(1).pow(char_minus_nine_div_sixteen)
* elem_to_p.pow(&[9u64]).pow(char_minus_nine_div_sixteen)
* elem_to_p.pow(&[5u64]);
// factor2 = prod_i=1^(m-3)/2 factor2_base^(p^2i)
let mut factor2 = F::one();
let n = (F::extension_degree() as usize - 3) / 2;
for i in 1..(n + 1) {
factor2 *= factor2_base.frobenius_map(i * 2);
}
let a1 = factor1 * factor2;

let a0 = (a1.square() * elem).pow(&[4u64]);
if a0 == -F::one() {
return None;
}

let b = a1 * trace;
let elem_b = b * elem;
let mut i = elem_b.double() * b;
let r = i.square();
if r == -F::one() {
let x = elem_b * (i - F::one());
return Some(x);
}

let u = b * d;
i = u.square().double() * c_squared * elem;
let x = u * c * elem * (i - F::one());
Some(x)
}

fn power_case_three_mod_four<F: crate::Field>(
elem: &F,
modulus_plus_one_div_four: &[u64],
) -> Option<F> {
let result = elem.pow(modulus_plus_one_div_four.as_ref());
(result.square() == *elem).then_some(result)
}
2 changes: 1 addition & 1 deletion test-templates/src/fields.rs
Original file line number Diff line number Diff line change
Expand Up @@ -430,7 +430,7 @@ macro_rules! __test_field {
let modulus_minus_one = &modulus - 1u8;
assert_eq!(BigUint::from(<$field>::MODULUS_MINUS_ONE_DIV_TWO), &modulus_minus_one / 2u32);
assert_eq!(<$field>::MODULUS_BIT_SIZE as u64, modulus.bits());
if let Some(SqrtPrecomputation::Case3Mod4 { modulus_plus_one_div_four }) = <$field>::SQRT_PRECOMP {
if let Some(SqrtPrecomputation::PowerCase3Mod4 { modulus_plus_one_div_four }) = <$field>::SQRT_PRECOMP {
// Handle the case where `(MODULUS + 1) / 4`
// has fewer limbs than `MODULUS`.
let check = ((&modulus + 1u8) / 4u8).to_u64_digits();
Expand Down