Skip to content

A simple Prometheus-compatible metrics exporter for Celery

License

Notifications You must be signed in to change notification settings

arivo-co/celery-prometheus-exporter

 
 

Repository files navigation

celery-prometheus-exporter

https://img.shields.io/docker/automated/zerok/celery-prometheus-exporter.svg?maxAge=2592000

celery-prometheus-exporter is a little exporter for Celery related metrics in order to get picked up by Prometheus. As with other exporters like mongodb_exporter or node_exporter this has been implemented as a standalone-service to make reuse easier across different frameworks.

So far it provides access to the following metrics:

  • celery_tasks exposes the number of tasks currently known to the queue grouped by state (RECEIVED, STARTED, ...).
  • celery_tasks_by_name exposes the number of tasks currently known to the queue grouped by name and state.
  • celery_workers exposes the number of currently probably alive workers
  • celery_task_latency exposes a histogram of task latency, i.e. the time until tasks are picked up by a worker
  • celery_tasks_runtime_seconds tracks the number of seconds tasks take until completed as histogram

How to use

There are multiple ways to install this. The obvious one is using pip install celery-prometheus-exporter and then using the celery-prometheus-exporter command:

$ celery-prometheus-exporter
Starting HTTPD on 0.0.0.0:8888

This package only depends on Celery directly, so you will have to install whatever other dependencies you will need for it to speak with your broker 🙂

Celery workers have to be configured to send task-related events: http://docs.celeryproject.org/en/latest/userguide/configuration.html#worker-send-task-events.

Running celery-prometheus-exporter with the --enable-events argument will periodically enable events on the workers. This is useful because it allows running celery workers with events disabled, until celery-prometheus-exporter is deployed, at which time events get enabled on the workers.

Alternatively, you can use the bundle Makefile and Dockerfile to generate a Docker image.

By default, the HTTPD will listen at 0.0.0.0:8888. If you want the HTTPD to listen to another port, use the --addr option or the environment variable DEFAULT_ADDR.

By default, this will expect the broker to be available through redis://redis:6379/0, although you can change via environment variable BROKER_URL. If you're using AMQP or something else other than Redis, take a look at the Celery documentation and install the additioinal requirements 😊 Also use the --broker option to specify a different broker URL.

If you need to pass additional options to your broker's transport use the --transport-options option. It tries to read a dict from a JSON object. E.g. to set your master name when using Redis Sentinel for broker discovery: --transport-options '{"master_name": "mymaster"}'

Use --tz to specify the timezone the Celery app is using. Otherwise the systems local time will be used.

Use --queue-list to specify the list of queues that will have its length monitored (Automatic Discovery of queues isn't supported right now, see limitations/ caveats. You can use the QUEUE_LIST environment variable as well.

If you then look at the exposed metrics, you should see something like this:

$ http get http://localhost:8888/metrics | grep celery_
# HELP celery_workers Number of alive workers
# TYPE celery_workers gauge
celery_workers 1.0
# HELP celery_tasks Number of tasks per state
# TYPE celery_tasks gauge
celery_tasks{state="RECEIVED"} 3.0
celery_tasks{state="PENDING"} 0.0
celery_tasks{state="STARTED"} 1.0
celery_tasks{state="RETRY"} 2.0
celery_tasks{state="FAILURE"} 1.0
celery_tasks{state="REVOKED"} 0.0
celery_tasks{state="SUCCESS"} 8.0
# HELP celery_tasks_by_name Number of tasks per state
# TYPE celery_tasks_by_name gauge
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="RECEIVED"} 0.0
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="PENDING"} 0.0
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="STARTED"} 0.0
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="RETRY"} 0.0
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="FAILURE"} 0.0
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="REVOKED"} 0.0
celery_tasks_by_name{name="my_app.tasks.calculate_something",state="SUCCESS"} 1.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="RECEIVED"} 3.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="PENDING"} 0.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="STARTED"} 1.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="RETRY"} 2.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="FAILURE"} 1.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="REVOKED"} 0.0
celery_tasks_by_name{name="my_app.tasks.fetch_some_data",state="SUCCESS"} 7.0
# HELP celery_task_latency Seconds between a task is received and started.
# TYPE celery_task_latency histogram
celery_task_latency_bucket{le="0.005"} 2.0
celery_task_latency_bucket{le="0.01"} 3.0
celery_task_latency_bucket{le="0.025"} 4.0
celery_task_latency_bucket{le="0.05"} 4.0
celery_task_latency_bucket{le="0.075"} 5.0
celery_task_latency_bucket{le="0.1"} 5.0
celery_task_latency_bucket{le="0.25"} 5.0
celery_task_latency_bucket{le="0.5"} 5.0
celery_task_latency_bucket{le="0.75"} 5.0
celery_task_latency_bucket{le="1.0"} 5.0
celery_task_latency_bucket{le="2.5"} 8.0
celery_task_latency_bucket{le="5.0"} 11.0
celery_task_latency_bucket{le="7.5"} 11.0
celery_task_latency_bucket{le="10.0"} 11.0
celery_task_latency_bucket{le="+Inf"} 11.0
celery_task_latency_count 11.0
celery_task_latency_sum 16.478713035583496
celery_queue_length{queue_name="queue1"} 35.0
celery_queue_length{queue_name="queue2"} 0.0

Limitations

  • Among tons of other features celery-prometheus-exporter doesn't support stats for multiple queues. As far as I can tell, only the routing key is exposed through the events API which might be enough to figure out the final queue, though.
  • This has only been tested with Redis so far.
  • At this point, you should specify the queues that will be monitored using an environment variable or an arg (--queue-list).

About

A simple Prometheus-compatible metrics exporter for Celery

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 95.0%
  • Makefile 4.7%
  • Shell 0.3%