Skip to content

Commit

Permalink
Merge pull request #658 from Sichao25/simulation
Browse files Browse the repository at this point in the history
Debug simulation module
  • Loading branch information
Xiaojieqiu authored Feb 20, 2024
2 parents e401e9b + d2ce291 commit 08d8c97
Show file tree
Hide file tree
Showing 3 changed files with 41 additions and 37 deletions.
56 changes: 33 additions & 23 deletions dynamo/simulation/Gillespie.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,9 +60,10 @@ def Gillespie(
"""

gene_num, species_num = C0.shape[0:2]
adata_no_splicing, P = None, None
adata_no_splicing, P, layers_no_splicing = None, None, None

if method == "basic":
gene_num = 2
if t_eval is None:
steps = (t_span[1] - t_span[0]) // dt # // int; %% remainder
t_eval = np.linspace(t_span[0], t_span[1], steps)
Expand All @@ -75,10 +76,10 @@ def Gillespie(
si=si,
be=be,
ga=ga,
C0=np.zeros((5, 1)),
C0=[np.zeros((1, 5))] * 2,
t_span=[0, 50],
n_traj=1,
t_eval=None,
t_eval=t_eval,
report=verbose,
) # unfinished, no need to interpolate now.
uu, ul, su, sl = [np.transpose(trajs_C[:, :, i + 1, :].reshape((gene_num, -1))) for i in range(4)]
Expand Down Expand Up @@ -108,20 +109,22 @@ def Gillespie(
}
)
obs.set_index("Cell_name", inplace=True)
true_beta, true_gamma, delta, eta = be, ga, None, None
elif method == "simulate_2bifurgenes":
gene_num = 2
param_dict = {
"a": [20, 20],
"b": [20, 20],
"S": [20, 20],
"K": [20, 20],
"m": [3, 3],
"n": [3, 3],
"beta": [1, 1],
"gamma": [1, 1],
}
_, trajs_C = simulate_2bifurgenes(
a1=20,
b1=20,
a2=20,
b2=20,
K=20,
n=3,
be1=1,
ga1=1,
be2=1,
ga2=1,
C0=np.zeros(4),
param_dict=param_dict,
t_span=t_span,
n_traj=n_traj,
report=verbose,
Expand Down Expand Up @@ -150,6 +153,7 @@ def Gillespie(
}
)
obs.set_index("Cell_name", inplace=True)
true_beta, true_gamma, delta, eta = param_dict["beta"], param_dict["gamma"], None, None
elif method == "differentiation":
gene_num = 2

Expand Down Expand Up @@ -413,6 +417,7 @@ def Gillespie(
}
)
obs.set_index("cell_name", inplace=True)
true_beta, true_gamma = [beta, beta], [gamma, gamma]
elif method == "oscillation":
gene_num = 2

Expand Down Expand Up @@ -658,6 +663,7 @@ def Gillespie(
}
)
obs.set_index("cell_name", inplace=True)
true_beta, true_gamma = [beta, beta], [gamma, gamma]
else:
raise Exception("method not implemented!")
# anadata: observation x variable (cells x genes)
Expand All @@ -668,8 +674,8 @@ def Gillespie(
var = pd.DataFrame(
{
"gene_short_name": ["gene_%d" % (i) for i in range(gene_num)],
"true_beta": [beta, beta],
"true_gamma": [gamma, gamma],
"true_beta": true_beta,
"true_gamma": true_gamma,
"true_eta": [eta, eta],
"true_delta": [delta, delta],
}
Expand All @@ -682,17 +688,21 @@ def Gillespie(
var.copy(),
layers=layers.copy(),
)
adata_no_splicing = anndata.AnnData(
scipy.sparse.csc_matrix(E.astype(int)).copy(),
obs.copy(),
var.copy(),
layers=layers_no_splicing.copy(),
)
if P is not None:
adata.obsm["protein"] = P
adata_no_splicing.obsm["protein"] = P
# remove cells that has no expression
adata = adata[np.array(adata.X.sum(1)).flatten() > 0, :]
adata_no_splicing = adata_no_splicing[np.array(adata_no_splicing.X.sum(1)).flatten() > 0, :]

if layers_no_splicing is not None:
adata_no_splicing = anndata.AnnData(
scipy.sparse.csc_matrix(E.astype(int)).copy(),
obs.copy(),
var.copy(),
layers=layers_no_splicing.copy(),
)
if P is not None:
adata_no_splicing.obsm["protein"] = P
# remove cells that has no expression
adata_no_splicing = adata_no_splicing[np.array(adata_no_splicing.X.sum(1)).flatten() > 0, :]

return adata, adata_no_splicing
14 changes: 4 additions & 10 deletions dynamo/simulation/ODE.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def hill_act_grad(x: float, A: float, K: float, n: float, g: float = 0) -> float


def toggle(
ab: Union[np.ndarray, Tuple[float, float]], t: Optional[float] = None, beta: float = 5, gamma: float = 1, n: int = 2
ab: Union[np.ndarray, Tuple[float, float]], beta: float = 5, gamma: float = 1, n: int = 2
) -> np.ndarray:
"""Calculates the right-hand side (RHS) of the differential equations for the toggle switch system.
Expand All @@ -105,7 +105,7 @@ def toggle(
return res


def Ying_model(x: np.ndarray, t: Optional[float]=None):
def Ying_model(x: np.ndarray):
"""network used in the potential landscape paper from Ying, et. al:
https://www.nature.com/articles/s41598-017-15889-2.
This is also the mixture of Gaussian model.
Expand All @@ -124,7 +124,7 @@ def Ying_model(x: np.ndarray, t: Optional[float]=None):
return ret


def jacobian_Ying_model(x, t=None):
def jacobian_Ying_model(x):
"""network used in the potential landscape paper from Ying, et. al:
https://www.nature.com/articles/s41598-017-15889-2.
This is also the mixture of Gaussian model.
Expand Down Expand Up @@ -333,14 +333,12 @@ def ode_neurongenesis(

def neurongenesis(
x,
t=None,
mature_mu=0,
n=4,
k=1,
a=4,
eta=0.25,
eta_m=0.125,
eta_b=0.1,
a_s=2.2,
a_e=6,
mx=10,
Expand Down Expand Up @@ -386,14 +384,10 @@ def neurongenesis(
return dx


def hsc():
pass


def state_space_sampler(ode, dim, seed_num=19491001, clip=True, min_val=0, max_val=4, N=10000):
"""Sample N points from the dim dimension gene expression space while restricting the values to be between min_val and max_val. Velocity vector at the sampled points will be calculated according to ode function."""

seed(seed)
seed(seed_num)
X = np.array([[uniform(min_val, max_val) for _ in range(dim)] for _ in range(N)])
Y = np.clip(X + ode(X), a_min=min_val, a_max=None) if clip else X + ode(X)

Expand Down
8 changes: 4 additions & 4 deletions dynamo/tools/moments.py
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,7 @@ def prepare_data_deterministic(
)
else:
tot_sfs = adata.obs.total_Size_Factor
sfs_x, sfs_y = tot_sfs[:, None], tot_sfs[:, None]
sfs_x, sfs_y = tot_sfs.values[:, None], tot_sfs.values[:, None]

m = [None] * len(layers)
v = [None] * len(layers)
Expand Down Expand Up @@ -424,7 +424,7 @@ def prepare_data_deterministic(
total_layers=None,
CM=pair_x_layer + group_pair_x_layer,
)
sfs_x, sfs_y = sfs_x[:, None], sfs_y[:, None]
sfs_x, sfs_y = sfs_x.values[:, None], sfs_y.values[:, None]

x_layer = normalize_mat_monocle(
x_layer[:, adata.var_names.isin(genes)],
Expand Down Expand Up @@ -477,7 +477,7 @@ def prepare_data_deterministic(
)
x_layer = normalize_mat_monocle(
x_layer[:, adata.var_names.isin(genes)],
szfactors=tot_sfs[:, None],
szfactors=tot_sfs.values[:, None],
relative_expr=True,
pseudo_expr=0,
norm_method=None,
Expand All @@ -486,7 +486,7 @@ def prepare_data_deterministic(
if return_ntr:
total_layer = normalize_mat_monocle(
total_layer[:, adata.var_names.isin(genes)],
szfactors=tot_sfs[:, None],
szfactors=tot_sfs.values[:, None],
relative_expr=True,
pseudo_expr=0,
norm_method=None,
Expand Down

0 comments on commit 08d8c97

Please sign in to comment.