Skip to content

Commit

Permalink
Update README.md (allenai#479)
Browse files Browse the repository at this point in the history
  • Loading branch information
natolambert authored Dec 8, 2024
1 parent 8d130cd commit 26b7325
Showing 1 changed file with 22 additions and 6 deletions.
28 changes: 22 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,20 +1,35 @@
# Training Open Instruction-Following Language Models

This repo serves as an open effort on instruction-tuning popular pretrained language models on publicly available datasets. We release this repo and will keep updating it with:
This repo serves as an open effort on instruction-tuning and post-training popular pretrained language models on publicly available datasets. We release this repo and will keep updating it with:

1. Code for finetuning language models with latest techniques and instruction datasets in a unified format.
2. Code for running standard evaluation on a range of benchmarks, targeting for differnt capabilities of these language models.
3. Checkpoints or other useful artifacts that we build in our exploration.
2. Code for DPO, preference finetuning and reinforcement learning with verifiable rewards (RLVR).
3. Code for running standard evaluation on a range of benchmarks, targeting for differnt capabilities of these language models (now in conjunction with [OLMES](https://github.com/allenai/olmes)).
4. Checkpoints or other useful artifacts that we build in our exploration.

Please see our first paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751) for more thoughts behind this project and our initial findings. Please see our second paper [Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2](https://arxiv.org/abs/2311.10702) for results using Llama-2 models and direct preference optimization. We are still working on more models. For more recent results involving PPO and DPO please see our third paper [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).
The lastest details on open post-training are found in [TÜLU 3: Pushing Frontiers in Open Language Model Post-Training](https://arxiv.org/abs/2411.15124).

Please see our first paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751) for more thoughts behind this project and our initial findings.
Please see our second paper [Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2](https://arxiv.org/abs/2311.10702) for results using Llama-2 models and direct preference optimization. We are still working on more models.
For more recent results involving PPO and DPO please see our third paper [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).

<p align="center" width="100%">
<img src="assets/images/tulu_logo.png" alt="Tülu (a hybrid camel) represents a suite of LLaMa models that we built by fully-finetuning them on a strong mix of datasets." style="width: 20%; min-width: 200px; display: block; margin: auto;">
</p>

Try some of the models we train with Open Instruct. There is a [free demo](https://playground.allenai.org/) or download them from HuggingFace:

| **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** | **OLMo-2 7B** | **OLMo-2 13B** |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) | [allenai/OLMo2-7B-1124](https://huggingface.co/allenai/OLMo2-7B-1124) | [allenai/OLMo-2-13B-1124](https://huggingface.co/allenai/OLMo-2-13B-1124) |
| **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT) | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT) |
| **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO) | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO) |
| **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct) |
| **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) | [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM) | (Same as 7B) |

## News

- [2024-11-22] We released [TÜLU 3: Pushing Frontiers in Open Language Model Post-Training](https://arxiv.org/abs/2411.15124) and updated our entire stack of open post-training recipes with both Llama 3.1 and OLMo 2.
- [2024-07-01] We released [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279) and have majorly updated our codebase to support new models and package versions.
- [2023-11-27] We released [Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2](https://arxiv.org/abs/2311.10702). Check out our models [here](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101). We have added a DPO finetuning script for replicating our results.
- [2023-09-26] We switched to use the official [alpaca-eval](https://github.com/tatsu-lab/alpaca_eval) library to run AlpacaFarm evaluation but use regenerated longer reference outputs. This will change our numbers reported in the paper. We will update the paper soon.
Expand Down Expand Up @@ -82,7 +97,7 @@ sh scripts/dpo_train_with_accelerate_config.sh 8 configs/train_configs/tulu3/tul
```


### RLVR
### Reinforcement Learning with Verifiable Rewards (RLVR)

```bash
# quick debugging run using 2 GPU (1 for inference, 1 for training)
Expand Down Expand Up @@ -168,7 +183,6 @@ python open_instruct/ppo_vllm_thread_ray_gtrl.py \

We release our scripts for measuring the overlap between instruction tuning datasets and evaluation datasets in `./decontamination`. See the [README](./decontamination/README.md) for more details.


### Developing
When submitting a PR to this repo, we check the core code in `open_instruct/` for style with the following:
```
Expand Down Expand Up @@ -252,6 +266,7 @@ Tulu 2.5:
```

Tulu 3:
```
@article{lambert2024tulu3,
title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
author = {
Expand All @@ -260,3 +275,4 @@ Tulu 3:
year = {2024},
email = {[email protected]}
}
```

0 comments on commit 26b7325

Please sign in to comment.