-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add the msmlp model implementation for the cnn ms example
Add the msmlp model implementation for the cnn ms example
- Loading branch information
1 parent
b34cfd7
commit 6f9051c
Showing
1 changed file
with
146 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
from singa import layer | ||
from singa import model | ||
from singa import tensor | ||
from singa import opt | ||
from singa import device | ||
import argparse | ||
import numpy as np | ||
|
||
np_dtype = {"float16": np.float16, "float32": np.float32} | ||
|
||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
|
||
class MLP(model.Model): | ||
|
||
def __init__(self, data_size=10, perceptron_size=100, num_classes=10): | ||
super(MLP, self).__init__() | ||
self.num_classes = num_classes | ||
self.dimension = 2 | ||
|
||
self.relu = layer.ReLU() | ||
self.linear1 = layer.Linear(perceptron_size) | ||
self.linear2 = layer.Linear(num_classes) | ||
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() | ||
|
||
def forward(self, inputs): | ||
y = self.linear1(inputs) | ||
y = self.relu(y) | ||
y = self.linear2(y) | ||
return y | ||
|
||
def train_one_batch(self, x, y, dist_option, spars): | ||
out = self.forward(x) | ||
loss = self.softmax_cross_entropy(out, y) | ||
|
||
if dist_option == 'plain': | ||
self.optimizer(loss) | ||
elif dist_option == 'half': | ||
self.optimizer.backward_and_update_half(loss) | ||
elif dist_option == 'partialUpdate': | ||
self.optimizer.backward_and_partial_update(loss) | ||
elif dist_option == 'sparseTopK': | ||
self.optimizer.backward_and_sparse_update(loss, | ||
topK=True, | ||
spars=spars) | ||
elif dist_option == 'sparseThreshold': | ||
self.optimizer.backward_and_sparse_update(loss, | ||
topK=False, | ||
spars=spars) | ||
return out, loss | ||
|
||
def set_optimizer(self, optimizer): | ||
self.optimizer = optimizer | ||
|
||
|
||
def create_model(pretrained=False, **kwargs): | ||
"""Constructs a CNN model. | ||
Args: | ||
pretrained (bool): If True, returns a pre-trained model. | ||
Returns: | ||
The created CNN model. | ||
""" | ||
model = MLP(**kwargs) | ||
|
||
return model | ||
|
||
|
||
__all__ = ['MLP', 'create_model'] | ||
|
||
if __name__ == "__main__": | ||
np.random.seed(0) | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('-p', | ||
choices=['float32', 'float16'], | ||
default='float32', | ||
dest='precision') | ||
parser.add_argument('-g', | ||
'--disable-graph', | ||
default='True', | ||
action='store_false', | ||
help='disable graph', | ||
dest='graph') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=1001, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
args = parser.parse_args() | ||
|
||
# generate the boundary | ||
f = lambda x: (5 * x + 1) | ||
bd_x = np.linspace(-1.0, 1, 200) | ||
bd_y = f(bd_x) | ||
|
||
# generate the training data | ||
x = np.random.uniform(-1, 1, 400) | ||
y = f(x) + 2 * np.random.randn(len(x)) | ||
|
||
# choose one precision | ||
precision = singa_dtype[args.precision] | ||
np_precision = np_dtype[args.precision] | ||
|
||
# convert training data to 2d space | ||
label = np.asarray([5 * a + 1 > b for (a, b) in zip(x, y)]).astype(np.int32) | ||
data = np.array([[a, b] for (a, b) in zip(x, y)], dtype=np_precision) | ||
|
||
dev = device.create_cuda_gpu_on(0) | ||
sgd = opt.SGD(0.1, 0.9, 1e-5, dtype=singa_dtype[args.precision]) | ||
tx = tensor.Tensor((400, 2), dev, precision) | ||
ty = tensor.Tensor((400,), dev, tensor.int32) | ||
model = MLP(data_size=2, perceptron_size=3, num_classes=2) | ||
|
||
# attach model to graph | ||
model.set_optimizer(sgd) | ||
model.compile([tx], is_train=True, use_graph=args.graph, sequential=True) | ||
model.train() | ||
|
||
for i in range(args.max_epoch): | ||
tx.copy_from_numpy(data) | ||
ty.copy_from_numpy(label) | ||
out, loss = model(tx, ty, 'fp32', spars=None) | ||
|
||
if i % 100 == 0: | ||
print("training loss = ", tensor.to_numpy(loss)[0]) |