Skip to content

Commit

Permalink
Merge pull request #1074 from NLGithubWP/add_train_mlp
Browse files Browse the repository at this point in the history
Add the training file for model selection
  • Loading branch information
chrishkchris authored Aug 29, 2023
2 parents 377582f + d9831d9 commit 1dc8487
Showing 1 changed file with 375 additions and 0 deletions.
375 changes: 375 additions & 0 deletions examples/model_selection_psql/ms_mlp/train_mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,375 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

from singa import singa_wrap as singa
from singa import device
from singa import tensor
from singa import opt
from singa import autograd
from singa.opt import Optimizer
from singa.opt import DecayScheduler
from singa.opt import Constant
import numpy as np
import time
import argparse
from PIL import Image

np_dtype = {"float16": np.float16, "float32": np.float32}

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}

# Data augmentation
def augmentation(x, batch_size):
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric')
for data_num in range(0, batch_size):
offset = np.random.randint(8, size=2)
x[data_num, :, :, :] = xpad[data_num, :,
offset[0]:offset[0] + x.shape[2],
offset[1]:offset[1] + x.shape[2]]
if_flip = np.random.randint(2)
if (if_flip):
x[data_num, :, :, :] = x[data_num, :, :, ::-1]
return x


# Calculate accuracy
def accuracy(pred, target):
# y is network output to be compared with ground truth (int)
y = np.argmax(pred, axis=1)
a = y == target
correct = np.array(a, "int").sum()
return correct


# Data partition according to the rank
def partition(global_rank, world_size, train_x, train_y, val_x, val_y):
# Partition training data
data_per_rank = train_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
train_x = train_x[idx_start:idx_end]
train_y = train_y[idx_start:idx_end]

# Partition evaluation data
data_per_rank = val_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
val_x = val_x[idx_start:idx_end]
val_y = val_y[idx_start:idx_end]
return train_x, train_y, val_x, val_y


# Function to all reduce NUMPY accuracy and loss from multiple devices
def reduce_variable(variable, dist_opt, reducer):
reducer.copy_from_numpy(variable)
dist_opt.all_reduce(reducer.data)
dist_opt.wait()
output = tensor.to_numpy(reducer)
return output


def resize_dataset(x, image_size):
num_data = x.shape[0]
dim = x.shape[1]
X = np.zeros(shape=(num_data, dim, image_size, image_size),
dtype=np.float32)
for n in range(0, num_data):
for d in range(0, dim):
X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize(
(image_size, image_size), Image.BILINEAR),
dtype=np.float32)
return X


def run(global_rank,
world_size,
local_rank,
max_epoch,
batch_size,
model,
data,
mssgd,
graph,
verbosity,
dist_option='plain',
spars=None,
precision='float32'):
# dev = device.create_cuda_gpu_on(local_rank) # need to change to CPU device for CPU-only machines
dev = device.get_default_device()
dev.SetRandSeed(0)
np.random.seed(0)

if data == 'cifar10':
from data import cifar10
train_x, train_y, val_x, val_y = cifar10.load()
elif data == 'cifar100':
from data import cifar100
train_x, train_y, val_x, val_y = cifar100.load()
elif data == 'mnist':
from data import mnist
train_x, train_y, val_x, val_y = mnist.load()


num_channels = train_x.shape[1]
image_size = train_x.shape[2]
data_size = np.prod(train_x.shape[1:train_x.ndim]).item()
num_classes = (np.max(train_y) + 1).item()

if model == 'resnet':
from model import resnet
model = resnet.resnet50(num_channels=num_channels,
num_classes=num_classes)
elif model == 'xceptionnet':
from model import xceptionnet
model = xceptionnet.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'cnn':
from model import cnn
model = cnn.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'alexnet':
from model import alexnet
model = alexnet.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'mlp':
import os, sys, inspect
current = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe())))
parent = os.path.dirname(current)
sys.path.insert(0, parent)
from mlp import model
model = model.create_model(data_size=data_size,
num_classes=num_classes)

elif model == 'msmlp':
import os, sys, inspect
current = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe())))
parent = os.path.dirname(current)
sys.path.insert(0, parent)
from msmlp import model
model = model.create_model(data_size=data_size,
num_classes=num_classes)

# For distributed training, sequential has better performance
if hasattr(mssgd, "communicator"):
DIST = True
sequential = True
else:
DIST = False
sequential = False

if DIST:
train_x, train_y, val_x, val_y = partition(global_rank, world_size,
train_x, train_y, val_x,
val_y)

if model.dimension == 4:
tx = tensor.Tensor(
(batch_size, num_channels, model.input_size, model.input_size), dev,
singa_dtype[precision])
elif model.dimension == 2:
tx = tensor.Tensor((batch_size, data_size), dev, singa_dtype[precision])
np.reshape(train_x, (train_x.shape[0], -1))
np.reshape(val_x, (val_x.shape[0], -1))

ty = tensor.Tensor((batch_size,), dev, tensor.int32)
num_train_batch = train_x.shape[0] // batch_size
num_val_batch = val_x.shape[0] // batch_size
idx = np.arange(train_x.shape[0], dtype=np.int32)

# Attach model to graph
model.set_optimizer(mssgd)
model.compile([tx], is_train=True, use_graph=graph, sequential=sequential)
dev.SetVerbosity(verbosity)

# Training and evaluation loop
for epoch in range(max_epoch):
start_time = time.time()
np.random.shuffle(idx)

if global_rank == 0:
print('Starting Epoch %d:' % (epoch))

# Training phase
train_correct = np.zeros(shape=[1], dtype=np.float32)
test_correct = np.zeros(shape=[1], dtype=np.float32)
train_loss = np.zeros(shape=[1], dtype=np.float32)

model.train()
print ("num_train_batch: \n", num_train_batch)
print ()
for b in range(num_train_batch):
if b % 200 == 0:
print ("b: \n", b)
# Generate the patch data in this iteration
x = train_x[idx[b * batch_size:(b + 1) * batch_size]]
if model.dimension == 4:
x = augmentation(x, batch_size)
if (image_size != model.input_size):
x = resize_dataset(x, model.input_size)
x = x.astype(np_dtype[precision])
y = train_y[idx[b * batch_size:(b + 1) * batch_size]]


synflow_flag = False
# Train the model
if epoch == (max_epoch - 1) and b == (num_train_batch - 1): ### synflow calcuation for the last batch
print ("last epoch calculate synflow")
synflow_flag = True
### step 1: all one input
# Copy the patch data into input tensors
tx.copy_from_numpy(np.ones(x.shape))
ty.copy_from_numpy(y)
### step 2: all weights turned to positive (done)
### step 3: new loss (done)
pn_p_g_list, out, loss = model(tx, ty, synflow_flag, dist_option, spars)
### step 4: calculate the multiplication of weights
synflow_score = 0.0
for pn_p_g_item in pn_p_g_list:
print ("calculate weight param * grad parameter name: \n", pn_p_g_item[0])
if len(pn_p_g_item[1].data.shape) == 2: # param_value.data is "weight"
synflow_score += np.sum(np.absolute(tensor.to_numpy(pn_p_g_item[1].data) * tensor.to_numpy(pn_p_g_item[2].data)))
print ("synflow_score: \n", synflow_score)
elif epoch == (max_epoch - 1) and b == (num_train_batch - 2): # all weights turned to positive
# Copy the patch data into input tensors
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
pn_p_g_list, out, loss = model(tx, ty, synflow_flag, dist_option, spars)
train_correct += accuracy(tensor.to_numpy(out), y)
train_loss += tensor.to_numpy(loss)[0]
# all params turned to positive
for pn_p_g_item in pn_p_g_list:
print ("absolute value parameter name: \n", pn_p_g_item[0])
pn_p_g_item[1].data = tensor.abs(pn_p_g_item[1].data)
else: # normal train steps
# Copy the patch data into input tensors
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
pn_p_g_list, out, loss = model(tx, ty, synflow_flag, dist_option, spars)
train_correct += accuracy(tensor.to_numpy(out), y)
train_loss += tensor.to_numpy(loss)[0]

if DIST:
# Reduce the evaluation accuracy and loss from multiple devices
reducer = tensor.Tensor((1,), dev, tensor.float32)
train_correct = reduce_variable(train_correct, mssgd, reducer)
train_loss = reduce_variable(train_loss, mssgd, reducer)

if global_rank == 0:
print('Training loss = %f, training accuracy = %f' %
(train_loss, train_correct /
(num_train_batch * batch_size * world_size)),
flush=True)

# Evaluation phase
model.eval()
for b in range(num_val_batch):
x = val_x[b * batch_size:(b + 1) * batch_size]
if model.dimension == 4:
if (image_size != model.input_size):
x = resize_dataset(x, model.input_size)
x = x.astype(np_dtype[precision])
y = val_y[b * batch_size:(b + 1) * batch_size]
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
out_test = model(tx)
test_correct += accuracy(tensor.to_numpy(out_test), y)

if DIST:
# Reduce the evaulation accuracy from multiple devices
test_correct = reduce_variable(test_correct, mssgd, reducer)

# Output the evaluation accuracy
if global_rank == 0:
print('Evaluation accuracy = %f, Elapsed Time = %fs' %
(test_correct / (num_val_batch * batch_size * world_size),
time.time() - start_time),
flush=True)

dev.PrintTimeProfiling()


if __name__ == '__main__':
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training
parser = argparse.ArgumentParser(
description='Training using the autograd and graph.')
parser.add_argument(
'model',
choices=['cnn', 'resnet', 'xceptionnet', 'mlp', 'alexnet'],
default='cnn')
parser.add_argument('data',
choices=['mnist', 'cifar10', 'cifar100'],
default='mnist')
parser.add_argument('-p',
choices=['float32', 'float16'],
default='float32',
dest='precision')
parser.add_argument('-m',
'--max-epoch',
default=100,
type=int,
help='maximum epochs',
dest='max_epoch')
parser.add_argument('-b',
'--batch-size',
default=64,
type=int,
help='batch size',
dest='batch_size')
parser.add_argument('-l',
'--learning-rate',
default=0.005,
type=float,
help='initial learning rate',
dest='lr')
# Determine which gpu to use
parser.add_argument('-i',
'--device-id',
default=0,
type=int,
help='which GPU to use',
dest='device_id')
parser.add_argument('-g',
'--disable-graph',
default='True',
action='store_false',
help='disable graph',
dest='graph')
parser.add_argument('-v',
'--log-verbosity',
default=0,
type=int,
help='logging verbosity',
dest='verbosity')

args = parser.parse_args()

mssgd = MSSGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision])
run(0,
1,
args.device_id,
args.max_epoch,
args.batch_size,
args.model,
args.data,
mssgd,
args.graph,
args.verbosity,
precision=args.precision)

0 comments on commit 1dc8487

Please sign in to comment.