Skip to content

Commit

Permalink
IncrementalIndex#add is no longer thread-safe. (#15697) (#15793)
Browse files Browse the repository at this point in the history
* IncrementalIndex#add is no longer thread-safe.

Following #14866, there is no longer a reason for IncrementalIndex#add
to be thread-safe.

It turns out it already was not using its selectors in a thread-safe way,
as exposed by #15615 making `testMultithreadAddFactsUsingExpressionAndJavaScript`
in `IncrementalIndexIngestionTest` flaky. Note that this problem isn't
new: Strings have been stored in the dimension selectors for some time,
but we didn't have a test that checked for that case; we only have
this test that checks for concurrent adds involving numeric selectors.

At any rate, this patch changes OnheapIncrementalIndex to no longer try
to offer a thread-safe "add" method. It also improves performance a bit
by adding a row ID supplier to the selectors it uses to read InputRows,
meaning that it can get the benefit of caching values inside the selectors.

This patch also:

1) Adds synchronization to HyperUniquesAggregator and CardinalityAggregator,
   which the similar datasketches versions already have. This is done to
   help them adhere to the contract of Aggregator: concurrent calls to
   "aggregate" and "get" must be thread-safe.

2) Updates OnHeapIncrementalIndexBenchmark to use JMH and moves it to the
   druid-benchmarks module.

* Spelling.

* Changes from static analysis.

* Fix javadoc.

Co-authored-by: Gian Merlino <[email protected]>
  • Loading branch information
LakshSingla and gianm authored Jan 30, 2024
1 parent d9ce4e0 commit de0569b
Show file tree
Hide file tree
Showing 10 changed files with 502 additions and 751 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,335 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.druid.benchmark.indexing;

import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.util.concurrent.Futures;
import com.google.common.util.concurrent.ListenableFuture;
import com.google.common.util.concurrent.ListeningExecutorService;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.common.util.concurrent.ThreadFactoryBuilder;
import org.apache.druid.common.config.NullHandling;
import org.apache.druid.data.input.MapBasedInputRow;
import org.apache.druid.java.util.common.ISE;
import org.apache.druid.java.util.common.Intervals;
import org.apache.druid.java.util.common.StringUtils;
import org.apache.druid.java.util.common.granularity.Granularities;
import org.apache.druid.query.Druids;
import org.apache.druid.query.FinalizeResultsQueryRunner;
import org.apache.druid.query.QueryPlus;
import org.apache.druid.query.QueryRunner;
import org.apache.druid.query.QueryRunnerFactory;
import org.apache.druid.query.QueryRunnerTestHelper;
import org.apache.druid.query.Result;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.CountAggregatorFactory;
import org.apache.druid.query.aggregation.DoubleSumAggregatorFactory;
import org.apache.druid.query.aggregation.LongSumAggregatorFactory;
import org.apache.druid.query.timeseries.TimeseriesQuery;
import org.apache.druid.query.timeseries.TimeseriesQueryEngine;
import org.apache.druid.query.timeseries.TimeseriesQueryQueryToolChest;
import org.apache.druid.query.timeseries.TimeseriesQueryRunnerFactory;
import org.apache.druid.query.timeseries.TimeseriesResultValue;
import org.apache.druid.segment.IncrementalIndexSegment;
import org.apache.druid.segment.Segment;
import org.apache.druid.segment.incremental.IncrementalIndex;
import org.apache.druid.segment.incremental.IncrementalIndexSchema;
import org.apache.druid.segment.incremental.IndexSizeExceededException;
import org.apache.druid.segment.incremental.OnheapIncrementalIndex;
import org.joda.time.Interval;
import org.junit.Assert;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.TearDown;
import org.openjdk.jmh.annotations.Warmup;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

/**
* Benchmark for {@link OnheapIncrementalIndex} doing queries and adds simultaneously.
*/
@State(Scope.Benchmark)
@Fork(value = 1)
@Warmup(iterations = 3)
@Measurement(iterations = 5)
public class OnheapIncrementalIndexBenchmark
{
static final int DIMENSION_COUNT = 5;

static {
NullHandling.initializeForTests();
}

/**
* Number of index and query tasks.
*/
private final int taskCount = 30;

/**
* Number of elements to add for each index task.
*/
private final int elementsPerAddTask = 1 << 15;

/**
* Number of query tasks to run simultaneously.
*/
private final int queryThreads = 4;

private AggregatorFactory[] factories;
private IncrementalIndex incrementalIndex;
private ListeningExecutorService indexExecutor;
private ListeningExecutorService queryExecutor;

private static MapBasedInputRow getLongRow(long timestamp, int rowID, int dimensionCount)
{
List<String> dimensionList = new ArrayList<String>(dimensionCount);
ImmutableMap.Builder<String, Object> builder = ImmutableMap.builder();
for (int i = 0; i < dimensionCount; i++) {
String dimName = StringUtils.format("Dim_%d", i);
dimensionList.add(dimName);
builder.put(dimName, Integer.valueOf(rowID).longValue());
}
return new MapBasedInputRow(timestamp, dimensionList, builder.build());
}

@Setup(Level.Trial)
public void setupFactories()
{
final ArrayList<AggregatorFactory> ingestAggregatorFactories = new ArrayList<>(DIMENSION_COUNT + 1);
ingestAggregatorFactories.add(new CountAggregatorFactory("rows"));
for (int i = 0; i < DIMENSION_COUNT; ++i) {
ingestAggregatorFactories.add(
new LongSumAggregatorFactory(
StringUtils.format("sumResult%s", i),
StringUtils.format("Dim_%s", i)
)
);
ingestAggregatorFactories.add(
new DoubleSumAggregatorFactory(
StringUtils.format("doubleSumResult%s", i),
StringUtils.format("Dim_%s", i)
)
);
}
factories = ingestAggregatorFactories.toArray(new AggregatorFactory[0]);
}

@Setup(Level.Trial)
public void setupExecutors()
{
indexExecutor = MoreExecutors.listeningDecorator(
Executors.newSingleThreadExecutor(
new ThreadFactoryBuilder()
.setDaemon(false)
.setNameFormat("index-executor-%d")
.setPriority(Thread.MIN_PRIORITY)
.build()
)
);
queryExecutor = MoreExecutors.listeningDecorator(
Executors.newFixedThreadPool(
queryThreads,
new ThreadFactoryBuilder()
.setDaemon(false)
.setNameFormat("query-executor-%d")
.build()
)
);
}

@Setup(Level.Invocation)
public void setupIndex()
throws NoSuchMethodException, InvocationTargetException, InstantiationException, IllegalAccessException
{
final Constructor<? extends OnheapIncrementalIndex> constructor =
OnheapIncrementalIndex.class.getDeclaredConstructor(
IncrementalIndexSchema.class,
int.class,
long.class,
boolean.class,
boolean.class
);

constructor.setAccessible(true);

this.incrementalIndex =
constructor.newInstance(
new IncrementalIndexSchema.Builder().withMetrics(factories).build(),
elementsPerAddTask * taskCount,
1_000_000_000L,
false,
false
);
}

@TearDown(Level.Invocation)
public void tearDownIndex()
{
incrementalIndex.close();
incrementalIndex = null;
}

@TearDown(Level.Trial)
public void tearDownExecutors() throws InterruptedException
{
indexExecutor.shutdown();
queryExecutor.shutdown();
if (!indexExecutor.awaitTermination(1, TimeUnit.MINUTES)) {
throw new ISE("Could not shut down indexExecutor");
}
if (!queryExecutor.awaitTermination(1, TimeUnit.MINUTES)) {
throw new ISE("Could not shut down queryExecutor");
}
indexExecutor = null;
queryExecutor = null;
}

@Benchmark
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public void concurrentAddRead() throws InterruptedException, ExecutionException
{
final ArrayList<AggregatorFactory> queryAggregatorFactories = new ArrayList<>(DIMENSION_COUNT + 1);
queryAggregatorFactories.add(new CountAggregatorFactory("rows"));
for (int i = 0; i < DIMENSION_COUNT; ++i) {
queryAggregatorFactories.add(
new LongSumAggregatorFactory(
StringUtils.format("sumResult%s", i),
StringUtils.format("sumResult%s", i)
)
);
queryAggregatorFactories.add(
new DoubleSumAggregatorFactory(
StringUtils.format("doubleSumResult%s", i),
StringUtils.format("doubleSumResult%s", i)
)
);
}

final long timestamp = System.currentTimeMillis();
final Interval queryInterval = Intervals.of("1900-01-01T00:00:00Z/2900-01-01T00:00:00Z");
final List<ListenableFuture<?>> indexFutures = new ArrayList<>();
final List<ListenableFuture<?>> queryFutures = new ArrayList<>();
final Segment incrementalIndexSegment = new IncrementalIndexSegment(incrementalIndex, null);
final QueryRunnerFactory factory = new TimeseriesQueryRunnerFactory(
new TimeseriesQueryQueryToolChest(),
new TimeseriesQueryEngine(),
QueryRunnerTestHelper.NOOP_QUERYWATCHER
);
final AtomicInteger currentlyRunning = new AtomicInteger(0);
final AtomicBoolean concurrentlyRan = new AtomicBoolean(false);
final AtomicBoolean someoneRan = new AtomicBoolean(false);
for (int j = 0; j < taskCount; j++) {
indexFutures.add(
indexExecutor.submit(
() -> {
currentlyRunning.incrementAndGet();
try {
for (int i = 0; i < elementsPerAddTask; i++) {
incrementalIndex.add(getLongRow(timestamp + i, 1, DIMENSION_COUNT));
}
}
catch (IndexSizeExceededException e) {
throw new RuntimeException(e);
}
currentlyRunning.decrementAndGet();
someoneRan.set(true);
}
)
);

queryFutures.add(
queryExecutor.submit(
() -> {
QueryRunner<Result<TimeseriesResultValue>> runner =
new FinalizeResultsQueryRunner<Result<TimeseriesResultValue>>(
factory.createRunner(incrementalIndexSegment),
factory.getToolchest()
);
TimeseriesQuery query = Druids.newTimeseriesQueryBuilder()
.dataSource("xxx")
.granularity(Granularities.ALL)
.intervals(ImmutableList.of(queryInterval))
.aggregators(queryAggregatorFactories)
.build();
List<Result<TimeseriesResultValue>> results = runner.run(QueryPlus.wrap(query)).toList();
for (Result<TimeseriesResultValue> result : results) {
if (someoneRan.get()) {
Assert.assertTrue(result.getValue().getDoubleMetric("doubleSumResult0") > 0);
}
}
if (currentlyRunning.get() > 0) {
concurrentlyRan.set(true);
}
}
)
);

}
List<ListenableFuture<?>> allFutures = new ArrayList<>(queryFutures.size() + indexFutures.size());
allFutures.addAll(queryFutures);
allFutures.addAll(indexFutures);
Futures.allAsList(allFutures).get();
QueryRunner<Result<TimeseriesResultValue>> runner = new FinalizeResultsQueryRunner<Result<TimeseriesResultValue>>(
factory.createRunner(incrementalIndexSegment),
factory.getToolchest()
);
TimeseriesQuery query = Druids.newTimeseriesQueryBuilder()
.dataSource("xxx")
.granularity(Granularities.ALL)
.intervals(ImmutableList.of(queryInterval))
.aggregators(queryAggregatorFactories)
.build();
List<Result<TimeseriesResultValue>> results = runner.run(QueryPlus.wrap(query)).toList();
final int expectedVal = elementsPerAddTask * taskCount;
for (Result<TimeseriesResultValue> result : results) {
Assert.assertEquals(elementsPerAddTask, result.getValue().getLongMetric("rows").intValue());
for (int i = 0; i < DIMENSION_COUNT; ++i) {
Assert.assertEquals(
StringUtils.format("Failed long sum on dimension %d", i),
expectedVal,
result.getValue().getLongMetric(StringUtils.format("sumResult%s", i)).intValue()
);
Assert.assertEquals(
StringUtils.format("Failed double sum on dimension %d", i),
expectedVal,
result.getValue().getDoubleMetric(StringUtils.format("doubleSumResult%s", i)).intValue()
);
}
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -293,7 +293,7 @@ public Double deserialize(ByteArrayDataInput in)
public static SerializeResult toBytes(
final Map<String, IndexSerdeTypeHelper> typeHelperMap,
final InputRow row,
AggregatorFactory[] aggs
final AggregatorFactory[] aggs
)
{
try {
Expand Down Expand Up @@ -323,14 +323,15 @@ public static SerializeResult toBytes(
}

//writing all metrics
Supplier<InputRow> supplier = () -> row;
WritableUtils.writeVInt(out, aggs.length);
for (AggregatorFactory aggFactory : aggs) {
String k = aggFactory.getName();
writeString(k, out);

final IncrementalIndex.InputRowHolder holder = new IncrementalIndex.InputRowHolder();
holder.set(row);
try (Aggregator agg = aggFactory.factorize(
IncrementalIndex.makeColumnSelectorFactory(VirtualColumns.EMPTY, aggFactory, supplier)
IncrementalIndex.makeColumnSelectorFactory(VirtualColumns.EMPTY, holder, aggFactory)
)) {
try {
agg.aggregate();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ static void hashValues(
}

@Override
public void aggregate()
public synchronized void aggregate()
{
if (byRow) {
hashRow(selectorPluses, collector);
Expand All @@ -93,10 +93,10 @@ public void aggregate()
}

@Override
public Object get()
public synchronized Object get()
{
// Workaround for non-thread-safe use of HyperLogLogCollector.
// OnheapIncrementalIndex has a penchant for calling "aggregate" and "get" simultaneously.
// Must make a new collector duplicating the underlying buffer to ensure the object from "get" is usable
// in a thread-safe manner.
return HyperLogLogCollector.makeCollectorSharingStorage(collector);
}

Expand Down
Loading

0 comments on commit de0569b

Please sign in to comment.