Skip to content

Commit

Permalink
Expose register_listing_table (#618)
Browse files Browse the repository at this point in the history
* Improve documentation

It's currently hard to see how datafusion can be configured
in python. Adding a small section on configuration, and linking
to examples, should help with that.

* Fix typo

* Fix clippy warning

* Support integer table partition columns

(tested in next commit)

* Expose `register_listing_table`

This lets users nicely use `object_store` with python
datafusion for partitioned dataset e.g. in S3.

Closes #617

---------

Co-authored-by: Henri Froese <[email protected]>
  • Loading branch information
henrifroese and Henri Froese authored Apr 14, 2024
1 parent 7204a35 commit 84415dd
Show file tree
Hide file tree
Showing 5 changed files with 165 additions and 7 deletions.
58 changes: 57 additions & 1 deletion datafusion/tests/test_sql.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,9 @@
import pyarrow as pa
import pyarrow.dataset as ds
import pytest
from datafusion.object_store import LocalFileSystem

from datafusion import udf
from datafusion import udf, col

from . import generic as helpers

Expand Down Expand Up @@ -374,3 +375,58 @@ def test_simple_select(ctx, tmp_path, arr):
result = batches[0].column(0)

np.testing.assert_equal(result, arr)


@pytest.mark.parametrize("file_sort_order", (None, [[col("int").sort(True, True)]]))
@pytest.mark.parametrize("pass_schema", (True, False))
def test_register_listing_table(ctx, tmp_path, pass_schema, file_sort_order):
dir_root = tmp_path / "dataset_parquet_partitioned"
dir_root.mkdir(exist_ok=False)
(dir_root / "grp=a/date_id=20201005").mkdir(exist_ok=False, parents=True)
(dir_root / "grp=a/date_id=20211005").mkdir(exist_ok=False, parents=True)
(dir_root / "grp=b/date_id=20201005").mkdir(exist_ok=False, parents=True)

table = pa.Table.from_arrays(
[
[1, 2, 3, 4, 5, 6, 7],
["a", "b", "c", "d", "e", "f", "g"],
[1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7],
],
names=["int", "str", "float"],
)
pa.parquet.write_table(
table.slice(0, 3), dir_root / "grp=a/date_id=20201005/file.parquet"
)
pa.parquet.write_table(
table.slice(3, 2), dir_root / "grp=a/date_id=20211005/file.parquet"
)
pa.parquet.write_table(
table.slice(5, 10), dir_root / "grp=b/date_id=20201005/file.parquet"
)

ctx.register_object_store("file://local", LocalFileSystem(), None)
ctx.register_listing_table(
"my_table",
f"file://{dir_root}/",
table_partition_cols=[("grp", "string"), ("date_id", "int")],
file_extension=".parquet",
schema=table.schema if pass_schema else None,
file_sort_order=file_sort_order,
)
assert ctx.tables() == {"my_table"}

result = ctx.sql(
"SELECT grp, COUNT(*) AS count FROM my_table GROUP BY grp"
).collect()
result = pa.Table.from_batches(result)

rd = result.to_pydict()
assert dict(zip(rd["grp"], rd["count"])) == {"a": 5, "b": 2}

result = ctx.sql(
"SELECT grp, COUNT(*) AS count FROM my_table WHERE date_id=20201005 GROUP BY grp"
).collect()
result = pa.Table.from_batches(result)

rd = result.to_pydict()
assert dict(zip(rd["grp"], rd["count"])) == {"a": 3, "b": 2}
2 changes: 2 additions & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ Example
Github and Issue Tracker <https://github.com/apache/arrow-datafusion-python>
Rust's API Docs <https://docs.rs/datafusion/latest/datafusion/>
Code of conduct <https://github.com/apache/arrow-datafusion/blob/main/CODE_OF_CONDUCT.md>
Examples <https://github.com/apache/arrow-datafusion-python/tree/main/examples>

.. _toc.guide:
.. toctree::
Expand All @@ -84,6 +85,7 @@ Example

user-guide/introduction
user-guide/basics
user-guide/configuration
user-guide/common-operations/index
user-guide/io/index
user-guide/sql
Expand Down
51 changes: 51 additions & 0 deletions docs/source/user-guide/configuration.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
.. Licensed to the Apache Software Foundation (ASF) under one
.. or more contributor license agreements. See the NOTICE file
.. distributed with this work for additional information
.. regarding copyright ownership. The ASF licenses this file
.. to you under the Apache License, Version 2.0 (the
.. "License"); you may not use this file except in compliance
.. with the License. You may obtain a copy of the License at
.. http://www.apache.org/licenses/LICENSE-2.0
.. Unless required by applicable law or agreed to in writing,
.. software distributed under the License is distributed on an
.. "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
.. KIND, either express or implied. See the License for the
.. specific language governing permissions and limitations
.. under the License.
Configuration
========

Let's look at how we can configure DataFusion. When creating a :code:`SessionContext`, you can pass in
a :code:`SessionConfig` and :code:`RuntimeConfig` object. These two cover a wide range of options.

.. code-block:: python
from datafusion import RuntimeConfig, SessionConfig, SessionContext
# create a session context with default settings
ctx = SessionContext()
print(ctx)
# create a session context with explicit runtime and config settings
runtime = RuntimeConfig().with_disk_manager_os().with_fair_spill_pool(10000000)
config = (
SessionConfig()
.with_create_default_catalog_and_schema(True)
.with_default_catalog_and_schema("foo", "bar")
.with_target_partitions(8)
.with_information_schema(True)
.with_repartition_joins(False)
.with_repartition_aggregations(False)
.with_repartition_windows(False)
.with_parquet_pruning(False)
.set("datafusion.execution.parquet.pushdown_filters", "true")
)
ctx = SessionContext(config, runtime)
print(ctx)
You can read more about available :code:`SessionConfig` options `here <https://arrow.apache.org/datafusion/user-guide/configs.html>`_,
and about :code:`RuntimeConfig` options `here https://docs.rs/datafusion/latest/datafusion/execution/runtime_env/struct.RuntimeConfig.html`_.
56 changes: 54 additions & 2 deletions src/context.rs
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,10 @@ use datafusion::arrow::datatypes::{DataType, Schema, SchemaRef};
use datafusion::arrow::pyarrow::PyArrowType;
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use datafusion::datasource::file_format::parquet::ParquetFormat;
use datafusion::datasource::listing::{
ListingOptions, ListingTable, ListingTableConfig, ListingTableUrl,
};
use datafusion::datasource::MemTable;
use datafusion::datasource::TableProvider;
use datafusion::execution::context::{
Expand Down Expand Up @@ -283,7 +287,7 @@ impl PySessionContext {
})
}

/// Register a an object store with the given name
/// Register an object store with the given name
pub fn register_object_store(
&mut self,
scheme: &str,
Expand Down Expand Up @@ -317,6 +321,53 @@ impl PySessionContext {
Ok(())
}

#[allow(clippy::too_many_arguments)]
#[pyo3(signature = (name, path, table_partition_cols=vec![],
file_extension=".parquet",
schema=None,
file_sort_order=None))]
pub fn register_listing_table(
&mut self,
name: &str,
path: &str,
table_partition_cols: Vec<(String, String)>,
file_extension: &str,
schema: Option<PyArrowType<Schema>>,
file_sort_order: Option<Vec<Vec<PyExpr>>>,
py: Python,
) -> PyResult<()> {
let options = ListingOptions::new(Arc::new(ParquetFormat::new()))
.with_file_extension(file_extension)
.with_table_partition_cols(convert_table_partition_cols(table_partition_cols)?)
.with_file_sort_order(
file_sort_order
.unwrap_or_default()
.into_iter()
.map(|e| e.into_iter().map(|f| f.into()).collect())
.collect(),
);
let table_path = ListingTableUrl::parse(path)?;
let resolved_schema: SchemaRef = match schema {
Some(s) => Arc::new(s.0),
None => {
let state = self.ctx.state();
let schema = options.infer_schema(&state, &table_path);
wait_for_future(py, schema).map_err(DataFusionError::from)?
}
};
let config = ListingTableConfig::new(table_path)
.with_listing_options(options)
.with_schema(resolved_schema);
let table = ListingTable::try_new(config)?;
self.register_table(
name,
&PyTable {
table: Arc::new(table),
},
)?;
Ok(())
}

/// Returns a PyDataFrame whose plan corresponds to the SQL statement.
pub fn sql(&mut self, query: &str, py: Python) -> PyResult<PyDataFrame> {
let result = self.ctx.sql(query);
Expand Down Expand Up @@ -913,8 +964,9 @@ pub fn convert_table_partition_cols(
.into_iter()
.map(|(name, ty)| match ty.as_str() {
"string" => Ok((name, DataType::Utf8)),
"int" => Ok((name, DataType::Int32)),
_ => Err(DataFusionError::Common(format!(
"Unsupported data type '{ty}' for partition column"
"Unsupported data type '{ty}' for partition column. Supported types are 'string' and 'int'"
))),
})
.collect::<Result<Vec<_>, _>>()
Expand Down
5 changes: 1 addition & 4 deletions src/dataframe.rs
Original file line number Diff line number Diff line change
Expand Up @@ -424,10 +424,7 @@ impl PyDataFrame {
let stream = wait_for_future(py, fut).map_err(py_datafusion_err)?;

match stream {
Ok(batches) => Ok(batches
.into_iter()
.map(|batch_stream| PyRecordBatchStream::new(batch_stream))
.collect()),
Ok(batches) => Ok(batches.into_iter().map(PyRecordBatchStream::new).collect()),
_ => Err(PyValueError::new_err(
"Unable to execute stream partitioned",
)),
Expand Down

0 comments on commit 84415dd

Please sign in to comment.