Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RecordBatch normalization (flattening) #6758

Draft
wants to merge 17 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
263 changes: 260 additions & 3 deletions arrow-array/src/record_batch.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,10 @@
//! A two-dimensional batch of column-oriented data with a defined
//! [schema](arrow_schema::Schema).

use crate::cast::AsArray;
use crate::{new_empty_array, Array, ArrayRef, StructArray};
use arrow_schema::{ArrowError, DataType, Field, Schema, SchemaBuilder, SchemaRef};
use arrow_schema::{ArrowError, DataType, Field, FieldRef, Schema, SchemaBuilder, SchemaRef};
use std::collections::VecDeque;
use std::ops::Index;
use std::sync::Arc;

Expand Down Expand Up @@ -394,6 +396,96 @@ impl RecordBatch {
)
}

/// Normalize a semi-structured [`RecordBatch`] into a flat table.
///
/// `separator`: Nested [`Field`]s will generate names separated by `separator`, e.g. for
/// separator= "." and the schema:
/// ```text
/// "foo": StructArray<"bar": Utf8>
/// ```
/// will generate:
/// ```text
/// "foo.bar": Utf8
/// ```
/// `max_level`: The maximum number of levels (depth of the `Schema` and `Columns`) to
/// normalize. If `0`, normalizes all levels.
///
/// # Example
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::{ArrayRef, Int64Array, StringArray, StructArray, RecordBatch};
/// # use arrow_schema::{DataType, Field, Fields, Schema};
///
/// let animals: ArrayRef = Arc::new(StringArray::from(vec!["Parrot", ""]));
/// let n_legs: ArrayRef = Arc::new(Int64Array::from(vec![Some(2), Some(4)]));
///
/// let animals_field = Arc::new(Field::new("animals", DataType::Utf8, true));
/// let n_legs_field = Arc::new(Field::new("n_legs", DataType::Int64, true));
///
/// let a = Arc::new(StructArray::from(vec![
/// (animals_field.clone(), Arc::new(animals.clone()) as ArrayRef),
/// (n_legs_field.clone(), Arc::new(n_legs.clone()) as ArrayRef),
/// ]));
///
/// let schema = Schema::new(vec![
/// Field::new(
/// "a",
/// DataType::Struct(Fields::from(vec![animals_field, n_legs_field])),
/// false,
/// )
/// ]);
///
/// let normalized = RecordBatch::try_new(Arc::new(schema), vec![a])
/// .expect("valid conversion")
/// .normalize(".", 0)
/// .expect("valid normalization");
///
/// let expected = RecordBatch::try_from_iter_with_nullable(vec![
/// ("a.animals", animals.clone(), true),
/// ("a.n_legs", n_legs.clone(), true),
/// ])
/// .expect("valid conversion");
///
/// assert_eq!(expected, normalized);
/// ```
pub fn normalize(&self, separator: &str, mut max_level: usize) -> Result<Self, ArrowError> {
if max_level == 0 {
max_level = usize::MAX;
}
Comment on lines +452 to +455
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
pub fn normalize(&self, separator: &str, mut max_level: usize) -> Result<Self, ArrowError> {
if max_level == 0 {
max_level = usize::MAX;
}
pub fn normalize(&self, separator: &str, max_level: Option<usize>) -> Result<Self, ArrowError> {
let max_level = max_level.unwrap_or(usize::MAX);

imo this seems the more Rusty way, making use of Option instead of a sentinel value (though I'm not sure if Some(0) is a valid input?)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Okay I've been working on this a bit, I found a few possible solutions that might fit. I think Option might not be the best choice, since personally, the case of Some(0) feels weird to me, and would mean you're doing an annoying copy for no reason (because of that, I would want to add in an if statement to catch it, but then we end up in the same place).

For RecordBatch, this seems to fit the Rusty syntax better, but unfortunately the same solution can't be echoed over to Schema without an additional dependency, not sure how I feel about that.

max_level.is_zero().then(|| max_level = usize::MAX);

Another option is to use something like NonZeroUsize, which I just learned about. My issue with this one is that we'd then be making the normalize call more annoying, since you have to instantiate it with something like

NonZeroUsize::new(1)

This makes the normalize call potentially longer and more annoying, but it means there wouldn't be another import.

Any thoughts on these/if you disagree?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the case of Some(0) feels weird to me, and would mean you're doing an annoying copy for no reason (because of that, I would want to add in an if statement to catch it, but then we end up in the same place).

Personally I find this okay. I'm less concerned with requiring an if check inside the code (its pretty simple anyway) compared to presenting a more Rust-like interface to users.

but unfortunately the same solution can't be echoed over to Schema without an additional dependency, not sure how I feel about that.

I don't follow this, the Schema code looks almost identical to the RecordBatch version.

I agree with NonZeroUsize potentially being a bit clunky for users to use (personally wasn't aware this was part of the stdlib either).

But yeah I'm curious to see what others might think for this too.

let mut queue: VecDeque<(usize, &ArrayRef, Vec<&str>, &FieldRef)> = VecDeque::new();
for (c, f) in self.columns.iter().zip(self.schema.fields()) {
let name_vec: Vec<&str> = vec![f.name()];
queue.push_back((0, c, name_vec, f));
}
let mut columns: Vec<ArrayRef> = Vec::new();
let mut fields: Vec<FieldRef> = Vec::new();

while let Some((depth, c, name, field_ref)) = queue.pop_front() {
match field_ref.data_type() {
DataType::Struct(ff) if depth < max_level => {
// Need to zip these in reverse to maintain original order
for (cff, fff) in c.as_struct().columns().iter().zip(ff.into_iter()).rev() {
let mut name = name.clone();
name.push(separator);
name.push(fff.name());
queue.push_front((depth + 1, cff, name, fff))
}
}
_ => {
let updated_field = Field::new(
name.concat(),
field_ref.data_type().clone(),
field_ref.is_nullable(),
);
columns.push(c.clone());
fields.push(Arc::new(updated_field));
}
}
}
RecordBatch::try_new(Arc::new(Schema::new(fields)), columns)
}

/// Returns the number of columns in the record batch.
///
/// # Example
Expand Down Expand Up @@ -768,15 +860,14 @@ where

#[cfg(test)]
mod tests {
use std::collections::HashMap;

use super::*;
use crate::{
BooleanArray, Int32Array, Int64Array, Int8Array, ListArray, StringArray, StringViewArray,
};
use arrow_buffer::{Buffer, ToByteSlice};
use arrow_data::{ArrayData, ArrayDataBuilder};
use arrow_schema::Fields;
use std::collections::HashMap;

#[test]
fn create_record_batch() {
Expand Down Expand Up @@ -1197,6 +1288,172 @@ mod tests {
assert_ne!(batch1, batch2);
}

#[test]
fn normalize_simple() {
let animals: ArrayRef = Arc::new(StringArray::from(vec!["Parrot", ""]));
let n_legs: ArrayRef = Arc::new(Int64Array::from(vec![Some(2), Some(4)]));
let year: ArrayRef = Arc::new(Int64Array::from(vec![None, Some(2022)]));

let animals_field = Arc::new(Field::new("animals", DataType::Utf8, true));
let n_legs_field = Arc::new(Field::new("n_legs", DataType::Int64, true));
let year_field = Arc::new(Field::new("year", DataType::Int64, true));

let a = Arc::new(StructArray::from(vec![
(animals_field.clone(), Arc::new(animals.clone()) as ArrayRef),
(n_legs_field.clone(), Arc::new(n_legs.clone()) as ArrayRef),
(year_field.clone(), Arc::new(year.clone()) as ArrayRef),
]));

let month = Arc::new(Int64Array::from(vec![Some(4), Some(6)]));

let schema = Schema::new(vec![
Field::new(
"a",
DataType::Struct(Fields::from(vec![animals_field, n_legs_field, year_field])),
false,
),
Field::new("month", DataType::Int64, true),
]);

let normalized = RecordBatch::try_new(Arc::new(schema), vec![a, month.clone()])
.expect("valid conversion")
.normalize(".", 0)
.expect("valid normalization");

let expected = RecordBatch::try_from_iter_with_nullable(vec![
("a.animals", animals.clone(), true),
("a.n_legs", n_legs.clone(), true),
("a.year", year.clone(), true),
("month", month.clone(), true),
])
.expect("valid conversion");

assert_eq!(expected, normalized);
}

#[test]
fn normalize_nested() {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Perhaps have some test cases with some more complex types thrown in as well? e.g. have a ListArray with a StructArray within

(Even if to prove that the Struct within the List shouldn't be affected)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good point, I'll work on these. I was a little hesitant since I'm not sure how many cases I need to cover (also since these tests are really annoying to instantiate), but it is a current blind spot.

// Initialize schema
let a = Arc::new(Field::new("a", DataType::Int64, true));
let b = Arc::new(Field::new("b", DataType::Int64, false));
let c = Arc::new(Field::new("c", DataType::Int64, true));

let one = Arc::new(Field::new(
"1",
DataType::Struct(Fields::from(vec![a.clone(), b.clone(), c.clone()])),
false,
));
let two = Arc::new(Field::new(
"2",
DataType::Struct(Fields::from(vec![a.clone(), b.clone(), c.clone()])),
true,
));

let exclamation = Arc::new(Field::new(
"!",
DataType::Struct(Fields::from(vec![one.clone(), two.clone()])),
false,
));

let schema = Schema::new(vec![exclamation.clone()]);

// Initialize fields
let a_field = Int64Array::from(vec![Some(0), Some(1)]);
let b_field = Int64Array::from(vec![Some(2), Some(3)]);
let c_field = Int64Array::from(vec![None, Some(4)]);

let one_field = StructArray::from(vec![
(a.clone(), Arc::new(a_field.clone()) as ArrayRef),
(b.clone(), Arc::new(b_field.clone()) as ArrayRef),
(c.clone(), Arc::new(c_field.clone()) as ArrayRef),
]);
let two_field = StructArray::from(vec![
(a.clone(), Arc::new(a_field.clone()) as ArrayRef),
(b.clone(), Arc::new(b_field.clone()) as ArrayRef),
(c.clone(), Arc::new(c_field.clone()) as ArrayRef),
]);

let exclamation_field = Arc::new(StructArray::from(vec![
(one.clone(), Arc::new(one_field) as ArrayRef),
(two.clone(), Arc::new(two_field) as ArrayRef),
]));

// Normalize top level
let normalized =
RecordBatch::try_new(Arc::new(schema.clone()), vec![exclamation_field.clone()])
.expect("valid conversion")
.normalize(".", 1)
.expect("valid normalization");

let expected = RecordBatch::try_from_iter_with_nullable(vec![
(
"!.1",
Arc::new(StructArray::from(vec![
(a.clone(), Arc::new(a_field.clone()) as ArrayRef),
(b.clone(), Arc::new(b_field.clone()) as ArrayRef),
(c.clone(), Arc::new(c_field.clone()) as ArrayRef),
])) as ArrayRef,
false,
),
(
"!.2",
Arc::new(StructArray::from(vec![
(a.clone(), Arc::new(a_field.clone()) as ArrayRef),
(b.clone(), Arc::new(b_field.clone()) as ArrayRef),
(c.clone(), Arc::new(c_field.clone()) as ArrayRef),
])) as ArrayRef,
true,
),
])
.expect("valid conversion");

assert_eq!(expected, normalized);

// Normalize all levels
let normalized = RecordBatch::try_new(Arc::new(schema), vec![exclamation_field])
.expect("valid conversion")
.normalize(".", 0)
.expect("valid normalization");

let expected = RecordBatch::try_from_iter_with_nullable(vec![
("!.1.a", Arc::new(a_field.clone()) as ArrayRef, true),
("!.1.b", Arc::new(b_field.clone()) as ArrayRef, false),
("!.1.c", Arc::new(c_field.clone()) as ArrayRef, true),
("!.2.a", Arc::new(a_field.clone()) as ArrayRef, true),
("!.2.b", Arc::new(b_field.clone()) as ArrayRef, false),
("!.2.c", Arc::new(c_field.clone()) as ArrayRef, true),
])
.expect("valid conversion");

assert_eq!(expected, normalized);
}

#[test]
fn normalize_empty() {
let animals_field = Arc::new(Field::new("animals", DataType::Utf8, true));
let n_legs_field = Arc::new(Field::new("n_legs", DataType::Int64, true));
let year_field = Arc::new(Field::new("year", DataType::Int64, true));

let schema = Schema::new(vec![
Field::new(
"a",
DataType::Struct(Fields::from(vec![animals_field, n_legs_field, year_field])),
false,
),
Field::new("month", DataType::Int64, true),
]);

let normalized = RecordBatch::new_empty(Arc::new(schema.clone()))
.normalize(".", 0)
.expect("valid normalization");

let expected = RecordBatch::new_empty(Arc::new(
schema.normalize(".", 0).expect("valid normalization"),
));

assert_eq!(expected, normalized);
}

#[test]
fn project() {
let a: ArrayRef = Arc::new(Int32Array::from(vec![Some(1), None, Some(3)]));
Expand Down
Loading
Loading