-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #14 from aozalevsky/main_cleanup
This is also a deprecated dev/test snippet
- Loading branch information
Showing
2 changed files
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
import os | ||
import openai | ||
from langchain.document_loaders.csv_loader import CSVLoader | ||
from langchain.embeddings.openai import OpenAIEmbeddings | ||
from langchain.text_splitter import CharacterTextSplitter | ||
from langchain.vectorstores import FAISS | ||
from langchain.document_loaders import TextLoader | ||
|
||
from langchain.embeddings.openai import OpenAIEmbeddings | ||
from langchain.vectorstores import FAISS | ||
from langchain.chat_models import ChatOpenAI | ||
from langchain.chains import RetrievalQA | ||
from langchain import PromptTemplate | ||
|
||
import re | ||
import requests | ||
import xml.etree.ElementTree as ET | ||
|
||
from fragment import Fragment | ||
from VectorDatabase import Latern | ||
|
||
|
||
|
||
# OpenAI Setup | ||
OPEN_API_KEY = "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" | ||
# openai.api_key = os.getenv(openai_api_key) | ||
os.environ['OPENAI_API_KEY'] = OPEN_API_KEY | ||
|
||
def getPmcPaper(pmcid): | ||
""" | ||
""" | ||
url = f'https://www.ebi.ac.uk/europepmc/webservices/rest/{pmcid}/fullTextXML' | ||
req = requests.get(url) | ||
res = req.text | ||
return res | ||
|
||
def extractMethodsFromPmcPaper(paper): | ||
""" | ||
""" | ||
tree = ET.fromstring(paper) | ||
mtext = [] | ||
for sec in tree.iter('sec'): | ||
for title in sec.iter('title'): | ||
if isinstance(title.text, str): | ||
if re.search('methods', title.text, re.IGNORECASE): | ||
mtext.extend(list(sec.itertext())) | ||
return " ".join(mtext) | ||
|
||
def preprocess(input_text): | ||
""" | ||
""" | ||
processed_data = input_text.replace("\n","") | ||
return processed_data | ||
|
||
def get_embeddings(fname): | ||
""" | ||
""" | ||
loader = TextLoader(fname) | ||
documents = loader.load() | ||
text_splitter = CharacterTextSplitter(separator = ".",chunk_size = 1000, chunk_overlap=0) | ||
|
||
docs = text_splitter.split_documents(documents) | ||
|
||
emb = OpenAIEmbeddings() | ||
input_texts = [d.page_content for d in docs] | ||
|
||
input_embeddings = emb.embed_documents(input_texts) | ||
text_embeddings = list(zip(input_texts, input_embeddings)) | ||
|
||
return text_embeddings, emb | ||
|
||
def saveFassIndex(fname, sname, ): | ||
""" | ||
""" | ||
txt_embs, emb = get_embeddings(docs) | ||
faissIndex = FAISS.from_embeddings(text_embeddings=txt_embs, embedding=emb) | ||
faissIndex.save_local(sname) | ||
# faissIndex = FAISS.from_documents(docs, OpenAIEmbeddings()) | ||
# faissIndex.save_local("input_doc") | ||
|
||
def Query(input_query, faiss_obj): | ||
chatbot = RetrievalQA.from_chain_type( | ||
llm=ChatOpenAI( | ||
openai_api_key=OPEN_API_KEY, | ||
temperature=0, model_name="gpt-3.5-turbo", max_tokens=50 | ||
), | ||
chain_type="stuff", | ||
retriever=faiss_obj.as_retriever(search_type="similarity", search_kwargs={"k":1}) | ||
) | ||
template = """ {query}? """ | ||
prompt = PromptTemplate( | ||
input_variables=["query"], | ||
template=template, | ||
) | ||
print(chatbot.run( | ||
prompt.format(query=input_query) | ||
)) | ||
|
||
|
||
def main(): | ||
text = getPmcPaper(pmcid) | ||
|
||
methods_text = preprocess(extractMethodsFromPmcPaper(text)) | ||
fname = 'input_file.txt' | ||
sname = 'input_doc' | ||
with open(fname, 'w') as file: | ||
file.write(methods_text) | ||
# print(methods_text) | ||
txt_embs, emb = get_embeddings(fname) | ||
|
||
fragments = [] | ||
for txt, embs in txt_embs: | ||
fragment = Fragment(pmcid, 'methods', txt, embs) | ||
fragments.append(fragment) | ||
|
||
latern = Latern() | ||
latern.insertEmbeddings(fragments) | ||
|
||
# retreieve. PMC | ||
faissIndex = FAISS.from_embeddings(text_embeddings=txt_embs, embedding=emb) | ||
inp_query = "Does the paper report a new structure of a biomolecule or biomolecular complex modeled using experimental data" | ||
Query(inp_query, faissIndex) | ||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.