-
Notifications
You must be signed in to change notification settings - Fork 133
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Transformer leakage inductance calculation example (#4623)
- Loading branch information
1 parent
855de01
commit bb46da2
Showing
1 changed file
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
""" | ||
Transformer leakage inductance calculation in Maxwell 2D Magnetostatic | ||
---------------------------------------------------------------------- | ||
This example shows how you can use pyAEDT to create a Maxwell 2D | ||
magnetostatic analysis analysis to calculate transformer leakage | ||
inductance and reactance. | ||
The analysis based on this document form page 8 on: | ||
https://www.ee.iitb.ac.in/~fclab/FEM/FEM1.pdf | ||
""" | ||
|
||
########################################################## | ||
# Perform required imports | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
||
import tempfile | ||
from pyaedt import Maxwell2d | ||
|
||
temp_dir = tempfile.TemporaryDirectory(suffix=".ansys") | ||
|
||
################################## | ||
# Initialize and launch Maxwell 2D | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Initialize and launch Maxwell 2D, providing the version, path to the project, and the design | ||
# name and type. | ||
|
||
non_graphical = False | ||
|
||
project_name = "Transformer_leakage_inductance" | ||
design_name = "1 Magnetostatic" | ||
solver = "MagnetostaticXY" | ||
desktop_version = "2024.1" | ||
|
||
m2d = Maxwell2d(specified_version=desktop_version, | ||
new_desktop_session=False, | ||
designname=design_name, | ||
projectname=project_name, | ||
solution_type=solver, | ||
non_graphical=non_graphical) | ||
|
||
######################### | ||
# Initialize dictionaries | ||
# ~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Initialize dictionaries that contain all the definitions for the design variables. | ||
|
||
mod = m2d.modeler | ||
mod.model_units = "mm" | ||
|
||
dimensions = { | ||
"core_width": "1097mm", | ||
"core_height": "2880mm", | ||
"core_opening_x1": "270mm", | ||
"core_opening_x2": "557mm", | ||
"core_opening_y1": "540mm", | ||
"core_opening_y2": "2340mm", | ||
"core_opening_width": "core_opening_x2-core_opening_x1", | ||
"core_opening_height": "core_opening_y2-core_opening_y1", | ||
"LV_x1": "293mm", | ||
"LV_x2": "345mm", | ||
"LV_width": "LV_x2-LV_x1", | ||
"LV_mean_radius": "LV_x1+LV_width/2", | ||
"LV_mean_turn_length": "pi*2*LV_mean_radius", | ||
"LV_y1": "620mm", | ||
"LV_y2": "2140mm", | ||
"LV_height": "LV_y2-LV_y1", | ||
"HV_x1": "394mm", | ||
"HV_x2": "459mm", | ||
"HV_width": "HV_x2-HV_x1", | ||
"HV_mean_radius": "HV_x1+HV_width/2", | ||
"HV_mean_turn_length": "pi*2*HV_mean_radius", | ||
"HV_y1": "620mm", | ||
"HV_y2": "2140mm", | ||
"HV_height": "HV_y2-HV_y1", | ||
"HV_LV_gap_radius": "(LV_x2 + HV_x1)/2", | ||
"HV_LV_gap_length": "pi*2*HV_LV_gap_radius", | ||
} | ||
|
||
specifications = { | ||
"Amp_turns": "135024A", | ||
"Frequency": "50Hz", | ||
"HV_turns": "980", | ||
"HV_current": "Amp_turns/HV_turns", | ||
} | ||
|
||
#################################### | ||
# Define variables from dictionaries | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Define design variables from the created dictionaries. | ||
|
||
m2d.variable_manager.set_variable(variable_name="Dimensions") | ||
|
||
for k, v in dimensions.items(): | ||
m2d[k] = v | ||
|
||
m2d.variable_manager.set_variable(variable_name="Windings") | ||
|
||
for k, v in specifications.items(): | ||
m2d[k] = v | ||
|
||
########################## | ||
# Create design geometries | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Create transformer core, HV and LV windings, and the region. | ||
|
||
core_id = mod.create_rectangle( | ||
position=[0, 0, 0], | ||
dimension_list=["core_width", "core_height", 0], | ||
name="core", | ||
matname="steel_1008", | ||
) | ||
|
||
core_hole_id = mod.create_rectangle( | ||
position=["core_opening_x1", "core_opening_y1", 0], | ||
dimension_list=["core_opening_width", "core_opening_height", 0], | ||
name="core_hole", | ||
) | ||
|
||
mod.subtract(blank_list=[core_id], tool_list=[core_hole_id], keep_originals=False) | ||
|
||
lv_id = mod.create_rectangle( | ||
position=["LV_x1", "LV_y1", 0], | ||
dimension_list=["LV_width", "LV_height", 0], | ||
name="LV", | ||
matname="copper", | ||
) | ||
|
||
hv_id = mod.create_rectangle( | ||
position=["HV_x1", "HV_y1", 0], | ||
dimension_list=["HV_width", "HV_height", 0], | ||
name="HV", | ||
matname="copper", | ||
) | ||
|
||
# Very small region is enough, because all the flux is concentrated in the core | ||
region_id = mod.create_region( | ||
pad_percent=[20, 10, 0, 10] | ||
) | ||
|
||
########################### | ||
# Assign boundary condition | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Assign vector potential to zero on all region boundaries. This makes x=0 edge a symmetry boundary. | ||
|
||
region_edges = region_id.edges | ||
|
||
m2d.assign_vector_potential( | ||
input_edge=region_edges, | ||
bound_name="VectorPotential1" | ||
) | ||
|
||
############################## | ||
# Create initial mesh settings | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Assign a relatively dense mesh to all objects to ensure that the energy is calculated accurately. | ||
|
||
m2d.mesh.assign_length_mesh( | ||
names=["core", "Region", "LV", "HV"], | ||
maxlength=50, | ||
maxel=None, | ||
meshop_name="all_objects" | ||
) | ||
|
||
#################### | ||
# Define excitations | ||
# ~~~~~~~~~~~~~~~~~~ | ||
# Assign the same current in amp-turns but in opposite directions to HV and LV windings. | ||
|
||
m2d.assign_current( | ||
object_list=lv_id, | ||
amplitude="Amp_turns", | ||
name="LV" | ||
) | ||
m2d.assign_current( | ||
object_list=hv_id, | ||
amplitude="Amp_turns", | ||
name="HV", | ||
swap_direction=True | ||
) | ||
|
||
############################## | ||
# Create and analyze the setup | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Create and analyze the setup. Setu no. of minimum passes to 3 to ensure accuracy. | ||
|
||
m2d.create_setup( | ||
setupname="Setup1", | ||
MinimumPasses=3 | ||
) | ||
m2d.analyze_setup() | ||
|
||
|
||
######################################################## | ||
# Calculate transformer leakage inductance and reactance | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Calculate transformer leakage inductance from the magnetic energy. | ||
|
||
field_calculator = m2d.ofieldsreporter | ||
|
||
field_calculator.EnterQty("Energy") | ||
field_calculator.EnterSurf("HV") | ||
field_calculator.CalcOp("Integrate") | ||
field_calculator.EnterScalarFunc("HV_mean_turn_length") | ||
field_calculator.CalcOp("*") | ||
|
||
field_calculator.EnterQty("Energy") | ||
field_calculator.EnterSurf("LV") | ||
field_calculator.CalcOp("Integrate") | ||
field_calculator.EnterScalarFunc("LV_mean_turn_length") | ||
field_calculator.CalcOp("*") | ||
|
||
field_calculator.EnterQty("Energy") | ||
field_calculator.EnterSurf("Region") | ||
field_calculator.CalcOp("Integrate") | ||
field_calculator.EnterScalarFunc("HV_LV_gap_length") | ||
field_calculator.CalcOp("*") | ||
|
||
field_calculator.CalcOp("+") | ||
field_calculator.CalcOp("+") | ||
|
||
field_calculator.EnterScalar(2) | ||
field_calculator.CalcOp("*") | ||
field_calculator.EnterScalarFunc("HV_current") | ||
field_calculator.EnterScalarFunc("HV_current") | ||
field_calculator.CalcOp("*") | ||
field_calculator.CalcOp("/") | ||
field_calculator.AddNamedExpression("Leakage_inductance", "Fields") | ||
|
||
field_calculator.CopyNamedExprToStack("Leakage_inductance") | ||
field_calculator.EnterScalar(2) | ||
field_calculator.EnterScalar(3.14159265358979) | ||
field_calculator.EnterScalarFunc("Frequency") | ||
field_calculator.CalcOp("*") | ||
field_calculator.CalcOp("*") | ||
field_calculator.CalcOp("*") | ||
field_calculator.AddNamedExpression("Leakage_reactance", "Fields") | ||
|
||
m2d.post.create_report( | ||
expressions=["Leakage_inductance", "Leakage_reactance"], | ||
report_category="Fields", | ||
primary_sweep_variable="core_width", | ||
plot_type="Data Table", | ||
plotname="Transformer Leakage Inductance", | ||
) | ||
|
||
###################################################################### | ||
# Print leakage inductance and reactance values in the Message Manager | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Print leakage inductance and reactance values in the Message Manager | ||
|
||
m2d.logger.clear_messages() | ||
m2d.logger.info( | ||
"Leakage_inductance = {:.4f}H".format(m2d.post.get_scalar_field_value(quantity_name="Leakage_inductance")) | ||
) | ||
m2d.logger.info( | ||
"Leakage_reactance = {:.2f}Ohm".format(m2d.post.get_scalar_field_value(quantity_name="Leakage_reactance")) | ||
) | ||
|
||
###################################### | ||
# Plot energy in the simulation domain | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Most of the energy is confined in the air between the HV and LV windings. | ||
|
||
object_faces = [] | ||
for name in mod.object_names: | ||
object_faces.extend(m2d.modeler.get_object_faces(name)) | ||
|
||
energy_field_overlay = m2d.post.create_fieldplot_surface( | ||
objlist=object_faces, | ||
quantityName="energy", | ||
plot_name="Energy", | ||
) | ||
|
||
m2d.save_project() | ||
m2d.release_desktop() | ||
temp_dir.cleanup() |