Skip to content
This repository has been archived by the owner on Apr 3, 2020. It is now read-only.
/ aliyun-cupid-sdk Public archive

SDK for open source framwork to interact with MaxCompute

License

Notifications You must be signed in to change notification settings

aliyun/aliyun-cupid-sdk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1 开发环境准备

!!!注意!!!

master分支的文档以及代码仅支持MaxCompute AliSpark 专有云输出

MaxCompute AliSpark公共云入口

1.1 下载并解压spark包

  1. 下载Spark on MaxCompute安装包。
  2. 对下载好的Spark on MaxCompute最新发布包进行解压,解压后的文件夹结构如下。
    .
    |-- RELEASE
    |-- __spark_libs__.zip
    |-- bin
    |-- conf
    |-- cupid
    |-- derby.log
    |-- examples
    |-- jars
    |-- logs
    |-- metastore_db
    |-- python
    |-- sbin
    |-- yarn

1.2 设置环境变量

JAVA_HOME设置

export JAVA_HOME=/path/to/jdk
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export PATH=$JAVA_HOME/bin:$PATH

SPARK_HOME设置

export SPARK_HOME=/path/to/spark_extracted_package
export PATH=$SPARK_HOME/bin:$PATH

对于SparkR用户,需要安装R至/home/admin/R目录,并设置path:

export PATH=/home/admin/R/bin/:$PATH

对于pyspark用户,选装python2.7,并设置path:

export PATH=/path/to/python/bin/:$PATH

1.3 设置Spark-defaults.conf

在$SPARK_HOME/conf路径下存在spark-defaults.conf文件,需要在该文件中设置MaxCompute相关的账号信息后,才可以提交Spark任务到MaxCompute。默认配置内容如下,将空白部分根据实际的账号信息填上即可。

# OdpsAccount Info Setting
spark.hadoop.odps.project.name=
spark.hadoop.odps.access.id=
spark.hadoop.odps.access.key=
spark.hadoop.odps.end.point=
#spark.hadoop.odps.moye.trackurl.host=
#spark.hadoop.odps.cupid.webproxy.endpoint=
spark.sql.catalogImplementation=odps
# spark-shell Setting
spark.driver.extraJavaOptions -Dscala.repl.reader=com.aliyun.odps.spark_repl.OdpsIntera
ctiveReader -Dscala.usejavacp=true
# SparkR Setting
# odps.cupid.spark.r.archive=/path/to/R-PreCompile-Package.zip
# Cupid Longtime Job
# spark.hadoop.odps.cupid.engine.running.type=longtime
# spark.hadoop.odps.cupid.job.capability.duration.hours=8640
# spark.hadoop.odps.moye.trackurl.dutation=8640
# spark.r.command=/home/admin/R/bin/Rscript
# spark.hadoop.odps.cupid.disk.driver.enable=false
spark.hadoop.odps.cupid.bearer.token.enable=false
spark.hadoop.odps.exec.dynamic.partition.mode=nonstrict

2 获取并编译样例模板

执行如下命令,获取并编译样例模板spark-example:

git clone https://github.com/aliyun/aliyun-cupid-sdk.git
cd aliyun-cupid-sdk
mvn -T 1C clean install -DskipTests

3 Maven依赖

上述章节中的GitHub项目,即spark-example可以作为用户QuickStart开发的模版,如果用户需要自定义开发,请确认pom.xml文件如下所示。spark的模块的版本使用社区2.1.0的版本即可,并且保证scope是provided。

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-core_2.11</artifactId>
  <version>2.1.0</version>
  <scope>provided</scope>
</dependency>

MaxCompute插件已经发布到Maven仓库,需添加以下依赖。

<dependency>
  <groupId>com.aliyun.odps</groupId>
  <artifactId>cupid-core_2.11</artifactId>
  <version>1.0.0</version>
  <scope>provided</scope>
</dependency>
<dependency>
  <groupId>com.aliyun.odps</groupId>
  <artifactId>cupid-datasource_2.11</artifactId>
  <version>1.0.0</version>
</dependency>
<dependency>
  <groupId>com.aliyun.odps</groupId>
  <artifactId>cupid-client_2.11</artifactId>
  <version>1.0.0</version>
</dependency>

maven库的依赖列表如下所示:

  • Cupid平台core代码,包括cupid task提交接口封装,以及父子进程读写表相关接口。
<dependency>
  <groupId>com.aliyun.odps</groupId>
  <artifactId>cupid-core_2.11</artifactId>
  <version>1.0.0</version>
</dependency>
  • datasource,封装了spark相关的MaxCompute Table读写的用户接口。
<dependency>
  <groupId>com.aliyun.odps</groupId>
  <artifactId>cupid-datasource_2.11</artifactId>
  <version>1.0.0</version>
</dependency>
  • 封装了Cupid Client模式的用户SDK。
<dependency>
  <groupId>com.aliyun.odps</groupId>
  <artifactId>cupid-client_2.11</artifactId>
  <version>1.0.0</version>
</dependency>

4 常用接口及运行应用

Spark目前支持spark shell、spark r、spark sql及spark jdbc等四种接口向集群提交任务,具体的运行应用如下。

4.1 Spark Shell

执行如下命令,启动应用

$cd $SPARK_HOME
$bin/spark-shell --master yarn

简单应用示例如下:

sc.parallelize(0 to 100, 2).collect
sql("show tables").show
sql("select * from spark_user_data").show(200,100)

4.2 Spark R

执行如下命令,启动应用。

// 创建一个目录R并解压该目录下的R.zip
$mkdir -p /home/admin/R && unzip ./R/R.zip -d /home/admin/R/
// 设置环境变量
$export PATH=/home/admin/R/bin/:$PATH
// 选择运行模式并启动应用
$bin/sparkR --master yarn --archives ./R/R.zip

简单应用示例如下:

df <- as.DataFrame(faithful)
df
head(select(df, df$eruptions))
head(select(df, "eruptions"))
head(filter(df, df$waiting < 50))
results <- sql("FROM spark_user_data SELECT *")
head(results)

4.3 Spark SQL

执行如下命令,启动应用。

// 进入spark目录
$cd $SPARK_HOME
// 选择运行模式并启动应用
$bin/spark-sql --master yarn

应用示例如下:

show tables;
select * from spark_user_data limit 3;
quit;

4.4 Spark JDBC

执行如下命令,启动应用。

// 停止线程
$sbin/stop-thriftserver.sh
// 重启线程
$sbin/start-thriftserver.sh
// 启动应用
$bin/beeline

简单应用示例如下:

!connect jdbc:hive2://localhost:10000/odps_smoke_test
show tables;
select * from mr_input limit 3;
!quit

5 常用场景案例演示

本章节将给出一些常用场景的案例演示,帮助用户更快的了解Spark on MaxCompute的相关使用。 用户需要下载GitHub项目并对项目进行编译后,才能够运行相关Demo。

// 下载GitHub项目
git clone https://github.com/aliyun/aliyun-cupid-sdk.git
cd aliyun-cupid-sdk
// 编译GitHub项目
mvn -T 1C clean install -DskipTests

执行完上述步骤后,会产生相应的jar包,这些jar包会在下面具体的案例演示Demo中使用。

5.1 WordCount案例

Spark运行简单的WordCount。 案例代码如下。
package com.aliyun.odps.spark.examples
import org.apache.spark.sql.SparkSession
object WordCount {
  def main(args: Array[String]) {
    val spark = SparkSession
      .builder()
      .appName("WordCount")
      .getOrCreate()
    val sc = spark.sparkContext
    try {
      sc.parallelize(1 to 100, 10).map(word => (word, 1)).reduceByKey(_ + _, 10).take(100).
      foreach(println)
    } finally {
      sc.stop()
    }
  }
}

提交作业的运行命令如下。

bin/spark-submit \
--master yarn-cluster \
--class com.aliyun.odps.spark.examples.WordCount \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

5.2 访问OSS案例

Spark可以访问OSS数据,示例如下。

package com.aliyun.odps.spark.examples.oss
import org.apache.spark.sql.SparkSession
object SparkUnstructuredDataCompute {
  def main(args: Array[String]) {
    val spark = SparkSession
      .builder()
      .appName("SparkUnstructuredDataCompute")
      .config("spark.hadoop.fs.oss.accessKeyId", "***")
      .config("spark.hadoop.fs.oss.accessKeySecret", "***")
      .config("spark.hadoop.fs.oss.endpoint", "oss-cn-hangzhou-zmf.aliyuncs.com")
      .getOrCreate()
    val sc = spark.sparkContext
    try {
      val pathIn = "oss://bucket/inputdata/"
      val inputData = sc.textFile(pathIn, 5)
      val cnt = inputData.count
      println(s"count: $cnt")
    } finally {
      sc.stop()
    }
  }
}

提交作业的运行命令如下

./bin/spark-submit \
--jars cupid/hadoop-aliyun-package-3.0.0-alpha2-odps-jar-with-dependencies.jar \
--class com.aliyun.odps.spark.examples.oss.SparkUnstructuredDataCompute \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

5.3 MaxCompute Table ReadWrite案例

读写MaxCompute Table,转化为Spark RDD。
⚠️注意:
案例Demo中的Project/Table必须存在,或者更改为对应的Project/Table。

案例代码如下。

5.3.1 读非分区表

java API:

/**
 *  read from normal table via rdd api
 *  desc cupid_wordcount;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
JavaRDD<Tuple2<String, String>> rdd_0 = javaOdpsOps.readTable(
        projectName,
        "cupid_wordcount",
        new Function2<Record, TableSchema, Tuple2<String, String>>() {
            public Tuple2<String, String> call(Record v1, TableSchema v2) throws Exception {
                return new Tuple2<String, String>(v1.getString(0), v1.getString(1));
            }
        },
        0
);

scala API:

/**
  * read from normal table via rdd api
  * desc cupid_wordcount;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val rdd_0 = odpsOps.readTable(
  projectName,
  "cupid_wordcount",
  (r: Record, schema: TableSchema) => (r.getString(0), r.getString(1))
)

5.3.2 读单列分区表

java API:

/**
 *  read from single partition column table via rdd api
 *  desc dftest_single_parted;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 *  | Partition Columns:                                                                 |
 *  +------------------------------------------------------------------------------------+
 *  | pt              | string     |                                                     |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
JavaRDD<Tuple3<String, String, String>> rdd_1 = javaOdpsOps.readTable(
        projectName,
        "dftest_single_parted",
        "pt=20160101",
        new Function2<Record, TableSchema, Tuple3<String, String, String>>() {
            public Tuple3<String, String, String> call(Record v1, TableSchema v2) throws Exception {
                return new Tuple3<String, String, String>(v1.getString(0), v1.getString(1), v1.getString("pt"));
            }
        },
        0
);

scala API:

/**
  * read from single partition column table via rdd api
  * desc dftest_single_parted;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  * | Partition Columns:                                                                 |
  * +------------------------------------------------------------------------------------+
  * | pt              | string     |                                                     |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val rdd_1 = odpsOps.readTable(
  projectName,
  "dftest_single_parted",
  Array("pt=20160101"),
  (r: Record, schema: TableSchema) => (r.getString(0), r.getString(1), r.getString("pt"))
)

5.3.3 读多列分区表

java API:

/**
 *  read from multi partition column table via rdd api
 *  desc dftest_parted;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 *  | Partition Columns:                                                                 |
 *  +------------------------------------------------------------------------------------+
 *  | pt              | string     |                                                     |
 *  | hour            | string     |                                                     |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
JavaRDD<Tuple4<String, String, String, String>> rdd_2 = javaOdpsOps.readTable(
        projectName,
        "dftest_parted",
        "pt=20160101,hour=12",
        new Function2<Record, TableSchema, Tuple4<String, String, String, String>>() {
            public Tuple4<String, String, String, String> call(Record v1, TableSchema v2) throws Exception {
                return new Tuple4<String, String, String, String>(v1.getString(0), v1.getString(1), v1.getString("pt"), v1.getString(3));
            }
        },
        0
);

scala API:

/**
  * read from multi partition column table via rdd api
  * desc dftest_parted;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  * | Partition Columns:                                                                 |
  * +------------------------------------------------------------------------------------+
  * | pt              | string     |                                                     |
  * | hour            | string     |                                                     |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val rdd_2 = odpsOps.readTable(
  projectName,
  "dftest_parted",
  Array("pt=20160101,hour=12"),
  (r: Record, schema: TableSchema) => (r.getString(0), r.getString(1), r.getString("pt"), r.getString(3))
)

5.3.4 指定多个分区(每个分区多列)读表

java API:

/**
 *  read with multi partitionSpec definition via rdd api
 *  desc cupid_partition_table1;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 *  | Partition Columns:                                                                 |
 *  +------------------------------------------------------------------------------------+
 *  | pt1             | string     |                                                     |
 *  | pt2             | string     |                                                     |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
JavaRDD<Tuple4<String, String, String, String>> rdd_3 = javaOdpsOps.readTable(
        projectName,
        "cupid_partition_table1",
        new String[]{"pt1=part1,pt2=part1", "pt1=part1,pt2=part2", "pt1=part2,pt2=part3"},
        new Function2<Record, TableSchema, Tuple4<String, String, String, String>>() {
            public Tuple4<String, String, String, String> call(Record v1, TableSchema v2) throws Exception {
                return new Tuple4<String, String, String, String>(v1.getString(0), v1.getString(1), v1.getString("pt1"), v1.getString("pt2"));
            }
        },
        0
);

scala API:

/**
  * read with multi partitionSpec definition via rdd api
  * desc cupid_partition_table1;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  * | Partition Columns:                                                                 |
  * +------------------------------------------------------------------------------------+
  * | pt1             | string     |                                                     |
  * | pt2             | string     |                                                     |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val rdd_3 = odpsOps.readTable(
  projectName,
  "cupid_partition_table1",
  Array("pt1=part1,pt2=part1", "pt1=part1,pt2=part2", "pt1=part2,pt2=part3"),
  (r: Record, schema: TableSchema) => (r.getString(0), r.getString(1), r.getString("pt1"), r.getString("pt2"))
)

5.3.5 存储RDD至非分区表

java API:

/**
 *  save rdd into normal table
 *  desc cupid_wordcount_empty;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
VoidFunction3<Tuple2<String, String>, Record, TableSchema> transfer_0 =
        new VoidFunction3<Tuple2<String, String>, Record, TableSchema>() {
            @Override
            public void call(Tuple2<String, String> v1, Record v2, TableSchema v3) throws Exception {
                v2.set("id", v1._1());
                v2.set(1, v1._2());
            }
        };
javaOdpsOps.saveToTable(projectName, "cupid_wordcount_empty", rdd_0.rdd(), transfer_0, true);

scala API:

/**
  * save rdd into normal table
  * desc cupid_wordcount_empty;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val transfer_0 = (v: Tuple2[String, String], record: Record, schema: TableSchema) => {
  record.set("id", v._1)
  record.set(1, v._2)
}
odpsOps.saveToTable(projectName, "cupid_wordcount_empty", rdd_0, transfer_0, true)

5.3.6 指定具体分区存储RDD至分区表

java API:

/**
 *  save rdd into partition table with single partition spec
 *  desc cupid_partition_table1;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 *  | Partition Columns:                                                                 |
 *  +------------------------------------------------------------------------------------+
 *  | pt1             | string     |                                                     |
 *  | pt2             | string     |                                                     |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
VoidFunction3<Tuple2<String, String>, Record, TableSchema> transfer_1 =
        new VoidFunction3<Tuple2<String, String>, Record, TableSchema>() {
            @Override
            public void call(Tuple2<String, String> v1, Record v2, TableSchema v3) throws Exception {
                v2.set("id", v1._1());
                v2.set("value", v1._2());
            }
        };
javaOdpsOps.saveToTable(projectName, "cupid_partition_table1", "pt1=test,pt2=dev", rdd_0.rdd(), transfer_1, true);

scala API:

/**
  * save rdd into partition table with single partition spec
  * desc cupid_partition_table1;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  * | Partition Columns:                                                                 |
  * +------------------------------------------------------------------------------------+
  * | pt1             | string     |                                                     |
  * | pt2             | string     |                                                     |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val transfer_1 = (v: Tuple2[String, String], record: Record, schema: TableSchema) => {
  record.set("id", v._1)
  record.set("value", v._2)
}
odpsOps.saveToTable(projectName, "cupid_partition_table1", "pt1=test,pt2=dev", rdd_0, transfer_1, true)

5.3.7 动态指定分区存储RDD至分区表

java API:

/**
 *  dynamic save rdd into partition table with multiple partition spec
 *  desc cupid_partition_table1;
 *  +------------------------------------------------------------------------------------+
 *  | Field           | Type       | Label | Comment                                     |
 *  +------------------------------------------------------------------------------------+
 *  | id              | string     |       |                                             |
 *  | value           | string     |       |                                             |
 *  +------------------------------------------------------------------------------------+
 *  | Partition Columns:                                                                 |
 *  +------------------------------------------------------------------------------------+
 *  | pt1             | string     |                                                     |
 *  | pt2             | string     |                                                     |
 *  +------------------------------------------------------------------------------------+
 */
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaOdpsOps javaOdpsOps = new JavaOdpsOps(ctx);
VoidFunction4<Tuple2<String, String>, Record, PartitionSpec, TableSchema> transfer_2 =
        new VoidFunction4<Tuple2<String, String>, Record, PartitionSpec, TableSchema>() {
            @Override
            public void call(Tuple2<String, String> v1, Record v2, PartitionSpec v3, TableSchema v4) throws Exception {
                v2.set("id", v1._1());
                v2.set("value", v1._2());

                String pt1_value = new Random().nextInt(10) % 2 == 0 ? "even" : "odd";
                String pt2_value = new Random().nextInt(10) % 2 == 0 ? "even" : "odd";
                v3.set("pt1", pt1_value);
                v3.set("pt2", pt2_value);
            }
        };
javaOdpsOps.saveToTableForMultiPartition(projectName, "cupid_partition_table1", rdd_0.rdd(), transfer_2, true);

scala API:

/**
  * dynamic save rdd into partition table with multiple partition spec
  * desc cupid_partition_table1;
  * +------------------------------------------------------------------------------------+
  * | Field           | Type       | Label | Comment                                     |
  * +------------------------------------------------------------------------------------+
  * | id              | string     |       |                                             |
  * | value           | string     |       |                                             |
  * +------------------------------------------------------------------------------------+
  * | Partition Columns:                                                                 |
  * +------------------------------------------------------------------------------------+
  * | pt1             | string     |                                                     |
  * | pt2             | string     |                                                     |
  * +------------------------------------------------------------------------------------+
  */
val sc = new SparkContext(conf)
val odpsOps = new OdpsOps(sc)
val transfer_2 = (v: Tuple2[String, String], record: Record, part: PartitionSpec, schema: TableSchema) => {
  record.set("id", v._1)
  record.set("value", v._2)

  val pt1_value = if (new Random().nextInt(10) % 2 == 0) "even" else "odd"
  val pt2_value = if (new Random().nextInt(10) % 2 == 0) "even" else "odd"
  part.set("pt1", pt1_value)
  part.set("pt2", pt2_value)
}
odpsOps.saveToTableForMultiPartition(projectName, "cupid_partition_table1", rdd_0, transfer_2, true)

提交作业的运行命令如下。

bin/spark-submit \
--master yarn-cluster \
--class com.aliyun.odps.spark.examples.OdpsTableReadWrite \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

MaxCompute Table读取并发度可以通过如下两个方法进行调整。

  • 调整spark.hadoop.odps.input.split.size,该值越大,map task越少,默认为256MB。
  • 通过OdpsOps.readTable中的numPartition进行设置,该值可直接决定map task个数,模式按照spark.hadoop.odps.input.split.size进行计算。

5.4 MaxCompute Table Spark-SQL案例

使用sqlContext读写MaxCompute Table。

⚠️注意:
- 案例Demo中的Project/Table必须存在,或者更改为对应的Project/Table。
- Spark-defaults.conf里必须设置spark.sql.catalogImplementation = odps。

案例代码如下。

package com.aliyun.odps.spark.examples
import org.apache.spark.sql.SparkSession
object OdpsTableReadWriteViaSQL {
  def main(args: Array[String]) {
    // please make sure spark.sql.catalogImplementation=odps in spark-defaults.conf
    // to enable odps catalog
    val spark = SparkSession
      .builder()
      .appName("OdpsTableReadWriteViaSQL")
      .getOrCreate()
    val projectName = spark.sparkContext.getConf.get("odps.project.name")
    val tableName = "cupid_wordcount"
    // get a ODPS table as a DataFrame
    val df = spark.table(tableName)
    println(s"df.count: ${df.count()}")
    // Just do some query
    spark.sql(s"select * from $tableName limit 10").show(10, 200)
    spark.sql(s"select id, count(id) from $tableName group by id").show(10, 200)
    // any table exists under project could be use
    // productRevenue
    spark.sql(
      """
        |SELECT product,
        | category,
        | revenue
        |FROM
        | (SELECT product,
        | category,
        | revenue,
        | dense_rank() OVER (PARTITION BY category
        | ORDER BY revenue DESC) AS rank
        | FROM productRevenue) tmp
        |WHERE rank <= 2
      """.stripMargin).show(10, 200)
    spark.stop()
  }
}

提交作业的运行命令如下。

bin/spark-submit
--master yarn-cluster
--class com.aliyun.odps.spark.examples.OdpsTableReadWrite
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

5.5 MaxCompute自研Client模式案例

由于安全考虑,MaxCompute里的机器不能进行直连。所以原生Spark中的yarn-client模式无法使用。为了解决交互式的需求,MaxCompute团队自主研发了Client模式。 案例代码如下。

package com.aliyun.odps.spark.examples
import com.aliyun.odps.cupid.client.spark.client.CupidSparkClientRunner
object SparkClientNormalFT {
  def main(args: Array[String]) {
    val cupidSparkClient = CupidSparkClientRunner.getReadyCupidSparkClient()
    val jarPath = args(0) //client-jobexamples jar path
    val sparkClientNormalApp = new SparkClientNormalApp(cupidSparkClient)
    sparkClientNormalApp.runNormalJob(jarPath)
    cupidSparkClient.stopRemoteDriver()
  }
}

完整Client模式含如下文件:

  • Client Control
spark-examples/src/main/scala/com/aliyun/odps/spark/examples/SparkClientNormalFT.scala
spark-examples/src/main/scala/com/aliyun/odps/spark/examples/SparkClientNormalApp.scala
  • SparkJob Unit
client-jobexamples/src/main/scala/com/aliyun/odps/cupid/client/spark/CacheRddJob.scala
client-jobexamples/src/main/scala/com/aliyun/odps/cupid/client/spark/ParallRddJob.scala
client-jobexamples/src/main/scala/com/aliyun/odps/cupid/client/spark/UseCacheRdd.scala
client-jobexamples/src/main/scala/com/aliyun/odps/cupid/client/spark/SparkJobKill.scala

提交作业的运行命令如下。

java -cp \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar:$SPARK_HOME/jars/* \
com.aliyun.odps.spark.examples.SparkClientNormalFT \
/path/to/aliyun-cupid-sdk/examples/client-jobexamples/target/client-jobexamples_2.11-1.0.0-SNAPSHOT.jar

5.6 MaxCompute Table PySpark案例

PySpark读写MaxCompute Table。 案例代码如下。

from odps.odps_sdk import OdpsOps
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, DataFrame
if __name__ == '__main__':
conf = SparkConf().setAppName("odps_pyspark")
sc = SparkContext(conf=conf)
sql_context = SQLContext(sc)
project_name = "cupid_testa1"
in_table_name = "cupid_wordcount"
out_table_name = "cupid_wordcount_py"
normal_df = OdpsOps.read_odps_table(sql_context, project_name, in_table_name)
for i in normal_df.sample(False, 0.01).collect():
  print i
    print "Read normal odps table finished"
OdpsOps.write_odps_table(sql_context, normal_df.sample(False, 0.001), project_name,
  out_table_name)
print "Write normal odps table finished"

提交作业的运行命令如下。

spark-submit \
--master yarn-cluster \
--jars /path/to/aliyun-cupid-sdk/external/cupid-datasource/target/cupid-datasource_2.11-1.0.0-SNAPSHOT.jar \
--py-files /path/to/aliyun-cupid-sdk/examples/spark-examples/src/main/python/odps.zip \
/path/to/aliyun-cupid-sdk/examples/spark-examples/src/main/python/odps_table_rw.py

5.7 Mllib案例

Mllib的model建议使用OSS进行读写。 案例代码如下。

package com.aliyun.odps.spark.examples.mllib
import org.apache.spark.mllib.clustering.KMeans._
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.SparkSession
object KmeansModelSaveToOss {
  val modelOssDir = "oss://bucket/kmeans-model"
  def main(args: Array[String]) {
    //1. train and save the model
    val spark = SparkSession
      .builder()
      .appName("KmeansModelSaveToOss")
      .config("spark.hadoop.fs.oss.accessKeyId", "***")
      .config("spark.hadoop.fs.oss.accessKeySecret", "***")
      .config("spark.hadoop.fs.oss.endpoint", "***")
      .getOrCreate()
    val sc = spark.sparkContext
    val points = Seq(
      Vectors.dense(0.0, 0.0),
      Vectors.dense(0.0, 0.1),
      Vectors.dense(0.1, 0.0),
      Vectors.dense(9.0, 0.0),
      Vectors.dense(9.0, 0.2),
      Vectors.dense(9.2, 0.0)
    )
    val rdd = sc.parallelize(points, 3)
    val initMode = K_MEANS_PARALLEL
    val model = KMeans.train(rdd, k = 2, maxIterations = 2, runs = 1, initMode)
    val predictResult1 = rdd.map(feature => "cluster id: " + model.predict(feature) + " feature:" +
      feature.toArray.mkString(",")).collect
    println("modelOssDir=" + modelOssDir)
    model.save(sc, modelOssDir)
    //2. predict from the oss model
    val modelLoadOss = KMeansModel.load(sc, modelOssDir)
    val predictResult2 = rdd.map(feature => "cluster id: " + modelLoadOss.predict(feature) + "
      feature:" + feature.toArray.mkString(",")).collect
    assert(predictResult1.size == predictResult2.size)
    predictResult2.foreach(result2 => assert(predictResult1.contains(result2)))
  }
}

提交作业的运行命令如下。

./bin/spark-submit \
--jars cupid/hadoop-aliyun-package-3.0.0-alpha2-odps-jar-with-dependencies.jar \
--class com.aliyun.odps.spark.examples.mllib.KmeansModelSaveToOss \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

5.8 pyspark交互式案例

只有能直连计算集群的机器上可执行pyspark。 选装python2.7,并设置path:

export PATH=/path/to/python/bin/:$PATH

启动命令:

bin/pyspark --master yarn-client

交互执行:

df=spark.sql("select * from spark_user_data")
df.show()

5.9 spark-shell交互式案例(读表)

只有能直连计算集群的机器上可执行spark-shell。 启动命令: ``` bin/spark-shell --master yarn ``` 交互执行: ``` sc.parallelize(0 to 100, 2).collect sql("show tables").show sql("select * from spark_user_data").show(200,100) ```

5.10 spark-shell交互式案例(mlib+OSS读写)

只有能直连计算集群的机器上可执行spark-shell。 在conf/spark-defaults.conf中加入以下配置:

spark.hadoop.fs.oss.accessKeyId=***
spark.hadoop.fs.oss.accessKeySecret=***
spark.hadoop.fs.oss.endpoint=***

启动命令:

bin/spark-shell --master yarn --jars cupid/hadoop-aliyun-package-3.0.0-alpha2-odps-jar-withdependencies.jar

交互执行:

import org.apache.spark.mllib.clustering.KMeans._
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
val modelOssDir = "oss://your_bucket/kmeans-model"
val points = Seq(
  Vectors.dense(0.0, 0.0),
  Vectors.dense(0.0, 0.1),
  Vectors.dense(0.1, 0.0),
  Vectors.dense(9.0, 0.0),
  Vectors.dense(9.0, 0.2),
  Vectors.dense(9.2, 0.0)
)
val rdd = sc.parallelize(points, 3)
val initMode = K_MEANS_PARALLEL
val model = KMeans.train(rdd, k = 2, maxIterations = 2, runs = 1, initMode)
val predictResult1 = rdd.map(feature => "cluster id: " + model.predict(feature) + " feature:" +
  feature.toArray.mkString(",")).collect
println("modelOssDir=" + modelOssDir)
model.save(sc, modelOssDir)
val modelLoadOss = KMeansModel.load(sc, modelOssDir)
val predictResult2 = rdd.map(feature => "cluster id: " + modelLoadOss.predict(feature) + "
  feature:" + feature.toArray.mkString(",")).collect
assert(predictResult1.size == predictResult2.size)
predictResult2.foreach(result2 => assert(predictResult1.contains(result2)))

5.11 sparkR交互式案例

只有能直连计算集群的机器上可执行sparkR,并且需要安装R至/home/admin/R目录,同时设置path:

export PATH=/home/admin/R/bin/:$PATH

启动命令:

bin/sparkR --master yarn -—archives ./R/R.zip

交互执行:

df <- as.DataFrame(faithful)
df
head(select(df, df$eruptions))
head(select(df, "eruptions"))
head(filter(df, df$waiting < 50))
results <- sql("FROM spark_user_data SELECT *")
head(results)

5.12 GraphX--PageRank案例

支持原生的graphx。 案例代码如下。

package com.aliyun.odps.spark.examples.graphx
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
object PageRank {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("pagerank")
    val sc = new SparkContext(conf)
    // construct vertices
    val users: RDD[(VertexId, Array[String])] = sc.parallelize(List(
      "1,BarackObama,Barack Obama",
      "2,ladygaga,Goddess of Love",
      "3,jeresig,John Resig",
      "4,justinbieber,Justin Bieber",
      "6,matei_zaharia,Matei Zaharia",
      "7,odersky,Martin Odersky",
      "8,anonsys"
    ).map(line => line.split(",")).map(parts => (parts.head.toLong, parts.tail)))
    // construct edges
    val followers: RDD[Edge[Double]] = sc.parallelize(Array(
      Edge(2L,1L,1.0),
      Edge(4L,1L,1.0),
      Edge(1L,2L,1.0),
      Edge(6L,3L,1.0),
      Edge(7L,3L,1.0),
      Edge(7L,6L,1.0),
      Edge(6L,7L,1.0),
      Edge(3L,7L,1.0)
    ))
    // construct graph
    val followerGraph: Graph[Array[String], Double] = Graph(users, followers)
    // restrict the graph to users with usernames and names
    val subgraph = followerGraph.subgraph(vpred = (vid, attr) => attr.size == 2)
    // compute PageRank
    val pageRankGraph = subgraph.pageRank(0.001)
    // get attributes of the top pagerank users
    val userInfoWithPageRank = subgraph.outerJoinVertices(pageRankGraph.vertices) {
      case (uid, attrList, Some(pr)) => (pr, attrList.toList)
      case (uid, attrList, None) => (0.0, attrList.toList)
    }
    println(userInfoWithPageRank.vertices.top(5)(Ordering.by(_._2._1)).mkString("\n"))
  }
}

提交作业的运行命令如下。

bin/spark-submit \
--master yarn-cluster \
--class com.aliyun.odps.spark.examples.graphx.PageRank \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

5.13 Spark Streaming--NetworkWordCount案例

支持原生Spark Streaming,以NetworkWordCount为例,首先本地需安装Netcat,并执行以下命令:

$ nc -lk 9999

此时,控制台的输入将成为SparkStreaming的输入。 案例代码如下。

package com.aliyun.odps.spark.examples.streaming
import org.apache.spark.SparkConf
import org.apache.spark.examples.streaming.StreamingExamples
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
object NetworkWordCount {
  def main(args: Array[String]) {
    if (args.length < 2) {
      System.err.println("Usage: NetworkWordCount <hostname> <port>")
      System.exit(1)
    }
    StreamingExamples.setStreamingLogLevels()
    // Create the context with a 1 second batch size
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val ssc = new StreamingContext(sparkConf, Seconds(1))
    // Create a socket stream on target ip:port and count the
    // words in input stream of \n delimited text (eg. generated by 'nc')
    // Note that no duplication in storage level only for running locally.
    // Replication necessary in distributed scenario for fault tolerance.
    val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND
      _DISK_SER)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
    wordCounts.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

提交作业的运行命令如下。

bin/spark-submit \
--master local[4] \
--class com.aliyun.odps.spark.examples.streaming.NetworkWordCount \
/path/to/aliyun-cupid-sdk/examples/spark-examples/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar localhost 9999

6 特殊说明

本章节将对使用中的一些特殊情况进行相关说明。

6.1 Spark Streaming任务特殊配置

MaxCompute支持Spark Streaming,为了支持长任务运行,需要在spark-defaults.conf中添加如下的特殊配置。 不同于离线作业,Streaming作业有一些特殊配置,这些配置也是配置在spark-defaults.conf即可生效

// 配置成longtime才不会被回收。
spark.hadoop.odps.cupid.engine.running.type=longtime
// 配置时间长度。
spark.hadoop.odps.cupid.job.capability.duration.hours=25920
// 配置failOver最大重试次数。
spark.yarn.maxAppAttempts=10
// 是否启用writeAheadLog模式,能够保证数据不丢失,但是效率会降低。
spark.streaming.receiver.writeAheadLog.enable=true

6.2 Tracking Url说明

提交完成作业后,一般会有如下输出。

17/08/28 14:53:26 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 11.137.199.2
ApplicationMaster RPC port: 57524
queue: queue
start time: 1503903179541
final status: SUCCEEDED
tracking URL: http://jobview.odps.aliyun-inc.com/proxyview/jobview/?h=http://service.odps.aliyun-inc.com/api&p=odps_public_dev&i=20170828065141675g5h4t6u1&t=spark&id=application_1503903039442_1185611255&metaname=20170828065141675g5h4t6u1&token=L0dSMHRkSlNXS2ZkeFE1UkVsckthTTZQWHV3PSxPRFBTX09CTzoxMDU5NTgyNzI0MzIyOTk5LDE1MDQxNjIzODMseyJTdGF0ZW1lbnQiOlt7IkFjdGlvbiI6WyJvZHBzOlJlYWQiXSwiRWZmZWN0IjoiQWxsb3ciLCJSZXNvdXJjZSI6WyJhY3M6b2RwczoqOnByb2plY3RzL29kcHNfcHVibGljX2Rldi9pbnN0YW5jZXMvMjAxNzA4MjgwNjUxNDE2NzVnNWg0dDZ1MSJdfV0sIlZlcnNpb24iOiIxIn0=
user: user

在输出示例中看到TrackingUrl,表示用户的作业已经提交到MaxCompute集群。上面输出示例中的TrackingUrl非常关键,它既是SparkWebUI,也是HistoryServer的Url。

7 相关参考

如果用户希望获取更多的Spark的相关内容,请参考:Spark Configuration

8 License

Licensed under the Apache License 2.0

About

SDK for open source framwork to interact with MaxCompute

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •