Word2Vec Swift wrapper.
Original Word2Vec implementation is here. Nice alghorithm description is available on deeplearning4j documentation page.
let inputURL = NSBundle.mainBundle().URLForResource("text8", withExtension: nil)
let paths = NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)
let documentsDirectory = paths[0]
let outputURL = NSURL(fileURLWithPath: documentsDirectory).URLByAppendingPathComponent("out.bin")
let model = Word2VecModel()
model.trainFile = inputURL
model.outputFile = outputURL
model.train()
You can find some text corpuses and pretrained models (*.bin
) in Word2Vec-iOS/res
folder.
let result = model.distance("cat", numberOfClosest: 10) // Look for 10 words semantically similar to "cat".
print(result)
Outputs words and similarity measure:
Optional(["bird": 0.760521, "cow": 0.766533, "dog": 0.831517, "rat": 0.748557, "blonde": 0.763721, "pig": 0.751001, "goat": 0.798104, "hamster": 0.768635, "bee": 0.774112, "llama": 0.747295])
Blonde and cat, really? hmmm...
let result = model.distance("wedding", numberOfClosest: 10)
print(result)
Optional(["banquet": 0.723855, "dinner": 0.711831, "funeral": 0.772873, "madonna": 0.688461, "bride": 0.721245, "diana": 0.685946, "bedroom": 0.691792, "reunion": 0.673289, "aunt": 0.703193, "maid": 0.66286])
let result = model.analogy("man woman king", numberOfClosest: 1) // (man - woman) == (king - ???)
print(result)
Optional(["daughter": 0.613628, "queen": 0.707821, "empress": 0.62057, "prince": 0.611979, "elizabeth": 0.60867])
Man to woman is the same as king to queen.
Another example:
let result = model.analogy("pet toy", numberOfClosest: 1) // (pet - toy) = (???)
print(result)
Optional(["partake": 0.481817, "eat": 0.502222, "allah": 0.457967, "preach": 0.49685, "marry": 0.449955])
Pet is a toy which eats. (Or the toy you can eat?)