Skip to content

Algorithms and data structures, from the course Algorithms and Data Structures.

License

Notifications You must be signed in to change notification settings

aleksandervestlund/algdat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TDT4120 - Algorithms and Data Structures

Table of Contents

Getting Started

  • Make sure you are using Python $\ge {\sf 3.10}$.

  • Download contents of the requirements.txt-file, either in a virtual environment or locally.

    pip install -r requirements.txt
    • To create a virtual environment, run the following command:

      python -m venv venv
    • To activate the virtual environment, run the following command:

      source venv/bin/activate
    • To deactivate the virtual environment, run the following command:

      deactivate
  • Would recommend creating a main.py-file in the root directory, to be able to run the algorithms.

    echo 'def main() -> None:
        pass
    
    
    if __name__ == "__main__":
        main()' > main.py

Note: Currently, there are no requirements for the project.

Course Information

  • University: Norwegian University of Science and Technology (NTNU).
  • Location: Trondheim, Norway.
  • Faculty: Faculty of Information Technology and Electrical Engineering (IE).
  • Department: Department of Computer Science (IDI).
  • Study level: Intermediate course, level $\sf II$.
  • Semester: Autumn 2023.
  • Instructor: Magnus Lie Hetland.
  • Language of instruction: Norwegian.
  • Book: Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, fourth edition.

Note: The course is subject to change. All algorithms are based on source code from the book. Master's level courses are called "Second degree level".

Structure

├── exercises
│   ├── exercise01
│   │   ├── max_permutations.py
│   │   └── take_pieces.py
│   ├── exercise02
│   │   └── sort.py
│   ├── exercise03
│   │   ├── find_maximum.py
│   │   └── largest_cuboid.py
│   ├── exercise04
│   │   ├── flexradix.py
│   │   └── k_largest.py
│   ├── exercise05
│   │   ├── build_tree.py
│   │   ├── longest_repeated_substring.py
│   │   ├── node.py
│   │   ├── search_tree.py
│   │   └── string_match.py
│   ├── exercise06
│   │   ├── f.py
│   │   └── longest_decreasing_subsequence.py
│   ├── exercise07
│   │   ├── build_decision_tree.py
│   │   ├── encode.py
│   │   └── encoding.py
│   ├── exercise08
│   │   ├── compatibility_graph.py
│   │   ├── detect_envy_cycle.py
│   │   ├── resolve_and_install.py
│   │   └── shortest_road.py
│   ├── exercise09
│   │   ├── check.py
│   │   ├── find_animal_groups.py
│   │   ├── higher_ed_solver.py
│   │   ├── power_grid.py
│   │   └── set.py
│   ├── exercise10
│   │   ├── building_time.py
│   │   ├── earliest_arrival.py
│   │   └── least_energy.py
│   ├── exercise11
│   │   ├── general_floyd_warshall.py
│   │   ├── schulze_method.py
│   │   └── transitive_closure.py
│   ├── exercise12
│   │   ├── allocate.py
│   │   └── max_flow.py
│   └── exercise13
│       └── verify_tsp.py
├── source
│   ├── datastructures
│   │   ├── chained_hash_table.py
│   │   ├── graph.py
│   │   ├── heap.py
│   │   ├── helpers
│   │   │   └── underflow.py
│   │   ├── huffman_node.py
│   │   ├── linked_list.py
│   │   ├── priority_queue.py
│   │   ├── queue.py
│   │   ├── set.py
│   │   ├── stack.py
│   │   ├── table.py
│   │   └── tree.py
│   ├── graphs
│   │   ├── all_pairs_shortest_paths
│   │   │   ├── extend_shortest_paths.py
│   │   │   ├── faster_apsp.py
│   │   │   ├── floyd_warshall.py
│   │   │   ├── johnson.py
│   │   │   ├── print_all_pairs_shortest_paths.py
│   │   │   ├── slow_apsp.py
│   │   │   └── transitive_closure.py
│   │   ├── flow
│   │   │   ├── edmond_karp.py
│   │   │   ├── ford_fulkerson.py
│   │   │   └── helpers
│   │   │       └── bfs_labelling.py
│   │   ├── minimal_spanning_tree
│   │   │   ├── components.py
│   │   │   ├── mst_kruskal.py
│   │   │   └── mst_prim.py
│   │   ├── single_source_shortest_paths
│   │   │   ├── bellman_ford.py
│   │   │   ├── dag_shortest_paths.py
│   │   │   ├── dijkstra.py
│   │   │   ├── helpers
│   │   │   │   ├── initialize_single_source.py
│   │   │   │   └── relax.py
│   │   │   └── shortest_paths.py
│   │   └── traversal
│   │       ├── bfs.py
│   │       ├── bipartite.py
│   │       ├── dfs.py
│   │       ├── edge_classification.py
│   │       └── traverse.py
│   ├── other
│   │   ├── dynamic_programming
│   │   │   ├── knapsack.py
│   │   │   ├── lcs_length.py
│   │   │   ├── matrix_chain_product.py
│   │   │   └── rod_cutting.py
│   │   ├── greed
│   │   │   ├── activity_selector.py
│   │   │   ├── gale_shapley.py
│   │   │   └── huffman.py
│   │   └── np
│   │       ├── has_short_path.py
│   │       ├── npc.md
│   │       └── verify_short_path.py
│   └── sorting
│       ├── bucket_sort.py
│       ├── counting_sort.py
│       ├── helpers
│       │   ├── bisect.py
│       │   ├── merge.py
│       │   ├── partition.py
│       │   └── select.py
│       ├── insertion_sort.py
│       ├── merge_sort.py
│       ├── quicksort.py
│       └── radix_sort.py
└── tests

Note: Generated using the tree command. The structure is subject to change. The exercises directory is no longer part of the git repository. The tests directory is empty. The bipartite.py-file, the shortest_paths.py, the print_heap-function in heap.py-file, and the height, tree_preorder_walk and tree_postorder_walk-methods in the tree.py-file are not part of the curriculum.

About

Algorithms and data structures, from the course Algorithms and Data Structures.

Resources

License

Stars

Watchers

Forks

Languages