Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement the workflow pipeline #114

Merged
merged 148 commits into from
Sep 6, 2022
Merged
Show file tree
Hide file tree
Changes from 139 commits
Commits
Show all changes
148 commits
Select commit Hold shift + click to select a range
eed8ab8
load_data
xiki-tempula Feb 28, 2021
4f96b58
update
xiki-tempula Mar 7, 2021
f05c5dd
update
xiki-tempula Mar 8, 2021
36f107a
update
xiki-tempula Mar 14, 2021
70d56bd
add doc
xiki-tempula Mar 21, 2021
d415427
add test
xiki-tempula Mar 22, 2021
f814bac
Update mbar_.py
xiki-tempula Mar 22, 2021
e197f67
cleanup
xiki-tempula Mar 27, 2021
61c9de2
Merge branch 'master' into workf
xiki-tempula Mar 27, 2021
37a2503
remove dependency for scipy constant
xiki-tempula Mar 27, 2021
ba2dcc3
dump test
xiki-tempula Mar 27, 2021
94d7bb6
Update test_workflow.py
xiki-tempula Mar 27, 2021
e4f6627
bump test
xiki-tempula Mar 27, 2021
2e0aed0
cleanup
xiki-tempula Mar 27, 2021
5ab748e
Delete result.log
xiki-tempula Mar 27, 2021
ddcaa8d
cleanup
xiki-tempula Mar 27, 2021
e566131
Merge branch 'workf' of https://github.com/xiki-tempula/alchemlyb int…
xiki-tempula Mar 27, 2021
90d033a
logging is a global variable
xiki-tempula Mar 27, 2021
c5a9b44
Revert "logging is a global variable"
xiki-tempula Mar 27, 2021
26e83fb
move some part to other PR
xiki-tempula Mar 29, 2021
eff7981
clean up
xiki-tempula Mar 29, 2021
71524fc
Merge branch 'master' into workf
xiki-tempula Apr 15, 2021
ea6b834
bump coverage
xiki-tempula Apr 15, 2021
f4b736c
dump coverage
xiki-tempula Apr 15, 2021
7dcce77
typo
xiki-tempula Apr 15, 2021
a926597
update
xiki-tempula Jul 10, 2021
cf142a1
revert change
xiki-tempula Jul 10, 2021
ce1539a
update
xiki-tempula Jul 10, 2021
c5724e1
Update ti_dhdl.py
xiki-tempula Jul 10, 2021
3cc332d
Merge branch 'master' into workf
xiki-tempula Jul 10, 2021
1a97228
Update abfe.py
xiki-tempula Jul 10, 2021
4d5425b
update to pass the test
xiki-tempula Jul 10, 2021
058aa99
Merge branch 'master' into workf
xiki-tempula Jul 13, 2021
ef52952
Update mbar_.py
xiki-tempula Jul 13, 2021
9d2eb06
update
xiki-tempula Aug 2, 2021
ab1ab76
Update abfe.py
xiki-tempula Aug 2, 2021
10fbdc4
Update mbar_.py
xiki-tempula Aug 2, 2021
622125a
Merge branch 'master' into workf
xiki-tempula Aug 2, 2021
4a72c2a
Revert "Update mbar_.py"
xiki-tempula Aug 2, 2021
90495b5
Merge branch 'workf' of https://github.com/xiki-tempula/alchemlyb int…
xiki-tempula Aug 2, 2021
dd1735e
Update mbar_.py
xiki-tempula Aug 2, 2021
eaf0b6e
Merge branch 'master' into workf
xiki-tempula Sep 24, 2021
cd2ff92
Create convergence.py
xiki-tempula Sep 25, 2021
aa3054e
Update convergence.py
xiki-tempula Sep 25, 2021
ef21b2d
Update convergence.py
xiki-tempula Sep 25, 2021
7238298
update
xiki-tempula Sep 26, 2021
8ad6bb2
update
xiki-tempula Sep 26, 2021
e87867f
update doc
xiki-tempula Sep 26, 2021
7d2b936
update doc
xiki-tempula Sep 26, 2021
36f9adc
update
xiki-tempula Oct 4, 2021
f9d08bc
update
xiki-tempula Oct 4, 2021
daa9870
Merge branch 'master' into convergence
orbeckst Oct 5, 2021
305ceac
update
xiki-tempula Oct 7, 2021
212e955
change parser
xiki-tempula Jun 5, 2021
d281582
Update test_convergence.py
xiki-tempula Oct 7, 2021
f6ce666
update
xiki-tempula Oct 7, 2021
e9601fb
Update convergence.py
xiki-tempula Oct 7, 2021
a4d379a
Update convergence.py
xiki-tempula Oct 7, 2021
1340367
Update convergence.py
xiki-tempula Oct 8, 2021
8b5135e
Merge branch 'master' into workf
xiki-tempula Oct 8, 2021
6a38d27
Merge pull request #1 from xiki-tempula/convergence
xiki-tempula Oct 8, 2021
e082035
Update abfe.py
xiki-tempula Oct 8, 2021
e7ce4fb
update
xiki-tempula Oct 8, 2021
3cbd016
Update abfe.py
xiki-tempula Oct 18, 2021
b70e68c
Update abfe.py
xiki-tempula Oct 18, 2021
204d22a
Merge branch 'master' into workf
xiki-tempula Oct 22, 2021
c8b7f66
Update convergence.py
xiki-tempula Oct 22, 2021
696c36d
Merge branch 'master' into workf
xiki-tempula Oct 30, 2021
24298a4
Update abfe.py
xiki-tempula Oct 30, 2021
73b781e
Update convergence.py
xiki-tempula Oct 30, 2021
e93d3bf
update
xiki-tempula Oct 30, 2021
281a864
update
xiki-tempula Oct 30, 2021
602b98b
Update test_workflow_ABFE.py
xiki-tempula Oct 30, 2021
b8606dd
Reobust gmx (#2)
xiki-tempula Dec 30, 2021
bbd281d
update
xiki-tempula Mar 5, 2022
dd5a604
Merge branch 'master' into workf
xiki-tempula Mar 6, 2022
1c40e97
test
xiki-tempula Mar 6, 2022
aecac7e
Update test_workflow.py
xiki-tempula Mar 13, 2022
672a41a
Merge branch 'workf' into base
xiki-tempula Mar 13, 2022
afb22f5
Base (#3)
xiki-tempula Mar 13, 2022
09efd77
Revert "Merge branch 'workf' into base"
xiki-tempula Mar 13, 2022
b173d93
Update base.py
xiki-tempula Mar 13, 2022
9ddc811
Update alchemlyb.workflows.base.rst
xiki-tempula Mar 13, 2022
3dc8c2a
update
xiki-tempula Mar 13, 2022
ecd29ee
update
xiki-tempula Mar 27, 2022
0b37cf4
Update base.py
xiki-tempula Mar 27, 2022
9b73218
Merge branch 'master' into base
xiki-tempula Apr 3, 2022
dd74acf
update
xiki-tempula Apr 10, 2022
b8355bb
Update CHANGES
xiki-tempula Apr 10, 2022
3132af3
Merge branch 'base' into workf
xiki-tempula Apr 10, 2022
36ca207
update
xiki-tempula Apr 10, 2022
02e9520
update
xiki-tempula Apr 10, 2022
b58d117
update
xiki-tempula Apr 10, 2022
58f52e7
update
xiki-tempula Apr 10, 2022
a71d32f
update
xiki-tempula Apr 10, 2022
3dbc165
update
xiki-tempula May 1, 2022
36ed0d0
Merge branch 'master' into workf
xiki-tempula May 1, 2022
f045017
update
xiki-tempula May 1, 2022
7da1bda
Merge branch 'workf' of https://github.com/xiki-tempula/alchemlyb int…
xiki-tempula May 1, 2022
81c33b8
Merge branch 'master' into workf
xiki-tempula May 2, 2022
b5a27a3
update
xiki-tempula May 15, 2022
87c473e
update
xiki-tempula May 15, 2022
5ee44a8
update
xiki-tempula May 15, 2022
db5232e
Update abfe.py
xiki-tempula May 15, 2022
1d2d536
update
xiki-tempula May 15, 2022
e79d31b
Merge branch 'master' into workf
orbeckst Jun 11, 2022
1d28042
update
xiki-tempula Jun 25, 2022
456288a
Update abfe.py
xiki-tempula Jun 26, 2022
aea041a
Merge branch 'master' into workf
xiki-tempula Jul 3, 2022
d859c4e
update
xiki-tempula Jul 3, 2022
03aad47
Update docs/workflows/alchemlyb.workflows.ABFE.rst
xiki-tempula Jul 3, 2022
995bba1
Update docs/workflows/alchemlyb.workflows.ABFE.rst
xiki-tempula Jul 3, 2022
5e3d6c4
update
xiki-tempula Jul 3, 2022
1a9f155
Merge branch 'master' into workf
xiki-tempula Aug 14, 2022
2ccef0c
resolve comments
xiki-tempula Aug 14, 2022
7aa6ecb
fix name
xiki-tempula Aug 14, 2022
eca06db
fix test
xiki-tempula Aug 14, 2022
720a76b
fix test
xiki-tempula Aug 14, 2022
5c829d0
fix test
xiki-tempula Aug 14, 2022
50f7432
fix test
xiki-tempula Aug 14, 2022
2b0941d
remove no cover
xiki-tempula Aug 14, 2022
2d173a8
bump coverage
xiki-tempula Aug 14, 2022
b2ed582
bump coverage
xiki-tempula Aug 14, 2022
80b9bb3
bump coverage
xiki-tempula Aug 14, 2022
d5c9ea5
remove no cover
xiki-tempula Aug 14, 2022
bd8873b
Merge branch 'master' into workf
orbeckst Aug 17, 2022
d061fdc
update
xiki-tempula Aug 22, 2022
a778a0e
update
xiki-tempula Aug 22, 2022
ab71686
update doc.
xiki-tempula Aug 22, 2022
c246e9c
fix docs
xiki-tempula Aug 22, 2022
c35ca7a
Update docs/workflows/alchemlyb.workflows.ABFE.rst
xiki-tempula Sep 2, 2022
9f17cbc
Update src/alchemlyb/convergence/convergence.py
xiki-tempula Sep 2, 2022
cc33374
Update src/alchemlyb/convergence/convergence.py
xiki-tempula Sep 2, 2022
f840d27
Update src/alchemlyb/estimators/mbar_.py
xiki-tempula Sep 2, 2022
5070fe6
Update src/alchemlyb/estimators/mbar_.py
xiki-tempula Sep 2, 2022
f7c7c21
Update src/alchemlyb/estimators/mbar_.py
xiki-tempula Sep 2, 2022
30bccd3
Update src/alchemlyb/estimators/mbar_.py
xiki-tempula Sep 2, 2022
fa4c4bf
update changes
xiki-tempula Sep 2, 2022
6cf8895
no cover
xiki-tempula Sep 2, 2022
8a31787
Update CHANGES
xiki-tempula Sep 2, 2022
be55f59
update
xiki-tempula Sep 2, 2022
e6752c9
update
xiki-tempula Sep 3, 2022
282e98d
fix test
xiki-tempula Sep 3, 2022
594bb33
changes
xiki-tempula Sep 3, 2022
77ce671
raise OSError from original_exception in ABFE.read()
orbeckst Sep 6, 2022
ed3871d
fixed tests for OSError exceptions
orbeckst Sep 6, 2022
d6d7b9f
use upper case estimators in tests
orbeckst Sep 6, 2022
ef4a8d7
fix test for windows, too
orbeckst Sep 6, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion CHANGES
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,13 @@ The rules for this file:

Changes
- Drop support for py3.7 (Issue #179, PR #214)
- forward_backward_convergence will use AutoMBAR as backend when `MBAR` is
selected as the estimator (PR #114).
xiki-tempula marked this conversation as resolved.
Show resolved Hide resolved
- AutoMBAR accepts the `method` argument (PR #114).

Enhancements
- Add a base class for workflows (PR #188).
- Add the ABFE workflow (PR #114).


Fixes
Expand All @@ -39,7 +44,6 @@ Changes
- remove broken .zip support from util.anyopen() (PR #197)

Enhancements
- Add a base class for workflows (PR #188).
- Add filter function to gmx.extract to make it more robust (PR #183): can filter
incomplete/corrupted lines (#126, #171) with filter=True.
- Add support to util.anyopen() for taking filelike objects (PR #197)
Expand Down
7 changes: 4 additions & 3 deletions docs/api_principles.rst
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,8 @@ The library is structured as follows, following a similar style to
│   ├── ti_dhdl.py
│   └── ...
└── workflows ### WORK IN PROGRESS
└── ...
│   ├── base.py
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
│   ├── abfe.py


* The :mod:`~alchemlyb.parsing` submodule contains parsers for individual MD engines, since the output files needed to perform alchemical free energy calculations vary widely and are not standardized. Each module at the very least provides an `extract_u_nk` function for extracting reduced potentials (needed for MBAR), as well as an `extract_dHdl` function for extracting derivatives required for thermodynamic integration. Other helper functions may be exposed for additional processing, such as generating an XVG file from an EDR file in the case of GROMACS. All `extract\_*` functions take similar arguments (a file path, parameters such as temperature), and produce standard outputs (:class:`pandas.DataFrame` for reduced potentials, :class:`pandas.Series` for derivatives).
Expand All @@ -74,8 +75,8 @@ The library is structured as follows, following a similar style to
* The :mod:`~alchemlyb.convergence` submodule features convenience functions/classes for doing convergence analysis using a given dataset and a chosen estimator.
* The :mod:`~alchemlyb.postprocessors` submodule contains functions to calculate new quantities or express data in different units.
* The :mod:`~alchemlyb.visualisation` submodule contains convenience plotting functions as known from, for example, `alchemical-analysis.py`_.
* The :mod:`~alchemlyb.workflows` submodule will contain complete analysis workflows that will serve as larger building blocks for complex analysis pipelines or a command line interface.

* The :mod:`~alchemlyb.workflows` submodule contains complete analysis workflows ...
For example, :mod:`alchemlyb.workflows.abfe` implements a complete absolute binding free energy calculation.".

All of these components lend themselves well to writing clear and flexible pipelines for processing data needed for alchemical free energy calculations, and furthermore allow for scaling up via libraries like `dask`_ or `joblib`_.

Expand Down
6 changes: 6 additions & 0 deletions docs/workflows.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,16 @@ of the results and step-by-step version that allows more flexibility.
For developers, the skeleton of the workflow should follow the example in
:class:`alchemlyb.workflows.base.WorkflowBase`.

For users, **alchemlyb** offers a workflow :class:`alchemlyb.workflows.ABFE`
similar to
`Alchemical Analysis <https://github.com/MobleyLab/alchemical-analysis>`_
for doing automatic absolute binding free energy (ABFE) analysis.

.. currentmodule:: alchemlyb.workflows

.. autosummary::
:toctree: workflows

base
ABFE

161 changes: 161 additions & 0 deletions docs/workflows/alchemlyb.workflows.ABFE.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
The ABFE workflow
==================
The *Absolute binding free energy* (ABFE) workflow provides a complete workflow
that uses the energy files generated by MD engine as input and generates the
binding free energy as well as the analysis plots.

Fully Automatic analysis
------------------------
*Absolute binding free energy* (ABFE) calculations can be analyzed with
two lines of code in a fully automated manner (similar to
`Alchemical Analysis <https://github.com/MobleyLab/alchemical-analysis>`_).
In this case, any parameters are set when invoking :class:`~alchemlyb.workflows.abfe.ABFE`
and reasonable defaults are chosen for any parameters not set explicitly. The two steps
are to

1. initialize an instance of the :class:`~alchemlyb.workflows.abfe.ABFE` class
2. invoke the :meth:`~alchemlyb.workflows.ABFE.run` method to execute
complete workflow.

For a GROMACS ABFE simulation, executing the workflow would look similar
to the following code (The log is configured by logger). ::

>>> from alchemtest.gmx import load_ABFE
>>> from alchemlyb.workflows import ABFE
>>> # Enable the logger
>>> import logging
>>> logging.basicConfig(filename='ABFE.log', level=logging.INFO)
>>> # Obtain the path of the data
>>> import os
>>> dir = os.path.dirname(load_ABFE()['data']['complex'][0])
>>> print(dir)
'alchemtest/gmx/ABFE/complex'
>>> workflow = ABFE(units='kcal/mol', software='Gromacs', dir=dir,
>>> prefix='dhdl', suffix='xvg', T=298, outdirectory='./')
>>> workflow.run(skiptime=10, uncorr='dhdl', threshold=50,
>>> methods=('MBAR', 'BAR', 'TI'), overlap='O_MBAR.pdf',
>>> breakdown=True, forwrev=10)
orbeckst marked this conversation as resolved.
Show resolved Hide resolved


The workflow uses the :class:`~alchemlyb.parsing` to parse the data from the
energy files, remove the initial unequilibrated frames and decorrelate the data
with :class:`~alchemlyb.preprocessing.subsampling`. The decorrelated dataset
:ref:`dHdl <dHdl>` and :ref:`u_nk <u_nk>` are then passed to
:class:`~alchemlyb.estimators` for free energy estimation. The workflow will
also perform a set of analysis that allows the user to examine the quality of
the estimation.

File Input
^^^^^^^^^^

This command expects the energy files to be structured in two common ways. It
could either be ::

simulation
├── lambda_0
│   ├── prod.xvg
│   └── ...
├── lambda_1
│   ├── prod.xvg
│   └── ...
└── ...

Where :code:`dir='simulation/lambda_*', prefix='prod', suffix='xvg'`. Or ::

dhdl_files
├── dhdl_0.xvg
├── dhdl_1.xvg
└── ...

Where :code:`dir='dhdl_files', prefix='dhdl_', suffix='xvg'`.

Output
^^^^^^

The workflow returns the free energy estimate using all of
:class:`~alchemlyb.estimators.TI`, :class:`~alchemlyb.estimators.BAR`,
:class:`~alchemlyb.estimators.MBAR`. For ABFE calculations, the alchemical
transformation is usually done is three stages, the *bonded*, *coul* and *vdw*
which corresponds to the free energy contribution from applying the
restraint to restrain the ligand to the protein, decouple/annihilate the
coulombic interaction between the ligand and the protein and
decouple/annihilate the protein-ligand lennard jones interactions. The result
will be stored in :attr:`~alchemlyb.workflows.ABFE.summary` as
:class:`pandas.Dataframe`. ::


MBAR MBAR_Error BAR BAR_Error TI TI_Error
States 0 -- 1 0.065967 0.001293 0.066544 0.001661 0.066663 0.001675
1 -- 2 0.089774 0.001398 0.089303 0.002101 0.089566 0.002144
2 -- 3 0.132036 0.001638 0.132687 0.002990 0.133292 0.003055
...
26 -- 27 1.243745 0.011239 1.245873 0.015711 1.248959 0.015762
27 -- 28 1.128429 0.012859 1.124554 0.016999 1.121892 0.016962
28 -- 29 1.010313 0.016442 1.005444 0.017692 1.019747 0.017257
Stages coul 10.215658 0.033903 10.017838 0.041839 10.017854 0.048744
vdw 22.547489 0.098699 22.501150 0.060092 22.542936 0.106723
bonded 2.374144 0.014995 2.341631 0.005507 2.363828 0.021078
TOTAL 35.137291 0.103580 34.860619 0.087022 34.924618 0.119206
orbeckst marked this conversation as resolved.
Show resolved Hide resolved

Output Files
^^^^^^^^^^^^

For quality assessment, a couple of plots were generated and written to
the folder specified by `outdirectory`.

The :ref:`overlay matrix for the MBAR estimator <plot_overlap_matrix>` will be
plotted and saved to :file:`O_MBAR.pdf`, which examines the overlap between
different lambda windows.

The :ref:`dHdl for TI <plot_TI_dhdl>` will be plotted to
:file:`dhdl_TI.pdf`, allows one to examine if the lambda scheduling has
covered the change of the gradient in the lambda space.

The :ref:`dF states <plot_dF_states>` will be plotted to :file:`dF_state.pdf` in
portrait model and :file:`dF_state_long.pdf` in landscape model, which
allows the user to example the contributions from each lambda window.

The forward and backward convergence will be plotted to :file:`dF_t.pdf` using
:class:`~alchemlyb.estimators.MBAR` and saved in
:attr:`~alchemlyb.workflows.ABFE.convergence`, which allows the user to
examine if the simulation time is enough to achieve a converged result.

Semi-automatic analysis
-----------------------
The same analysis could also performed in steps allowing access and modification
to the data generated at each stage of the analysis. ::

>>> from alchemtest.gmx import load_ABFE
>>> from alchemlyb.workflows import ABFE
>>> # Obtain the path of the data
>>> import os
>>> dir = os.path.dirname(load_ABFE()['data']['complex'][0])
>>> print(dir)
'alchemtest/gmx/ABFE/complex'
>>> # Load the data
>>> workflow = ABFE(software='Gromacs', dir=dir,
>>> prefix='dhdl', suffix='xvg', T=298, outdirectory='./')
>>> # Set the unit.
>>> workflow.update_units('kcal/mol')
>>> # Read the data
>>> workflow.read()
>>> # Decorrelate the data.
>>> workflow.preprocess(skiptime=10, uncorr='dhdl', threshold=50)
>>> # Run the estimator
>>> workflow.estimate(methods=('mbar', 'bar', 'ti'))
>>> # Retrieve the result
>>> summary = workflow.generate_result()
>>> # Plot the overlap matrix
>>> workflow.plot_overlap_matrix(overlap='O_MBAR.pdf')
>>> # Plot the dHdl for TI
>>> workflow.plot_ti_dhdl(dhdl_TI='dhdl_TI.pdf')
>>> # Plot the dF states
>>> workflow.plot_dF_state(dF_state='dF_state.pdf')
>>> # Convergence analysis
>>> workflow.check_convergence(10, dF_t='dF_t.pdf')

API Reference
-------------
.. autoclass:: alchemlyb.workflows.ABFE
:members:
:inherited-members:
56 changes: 38 additions & 18 deletions src/alchemlyb/convergence/convergence.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,15 @@
import pandas as pd
import logging
from warnings import warn

import pandas as pd
import numpy as np

from ..estimators import MBAR, BAR, TI, AutoMBAR
from ..estimators import BAR, TI, FEP_ESTIMATORS, TI_ESTIMATORS
from ..estimators import AutoMBAR as MBAR
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
from .. import concat


def forward_backward_convergence(df_list, estimator='mbar', num=10):
def forward_backward_convergence(df_list, estimator='MBAR', num=10, **kwargs):
'''Forward and backward convergence of the free energy estimate.

Generate the free energy estimate as a function of time in both directions,
Expand All @@ -20,10 +23,16 @@ def forward_backward_convergence(df_list, estimator='mbar', num=10):
----------
df_list : list
List of DataFrame of either dHdl or u_nk.
estimator : {'mbar', 'bar', 'ti', 'autombar'}
estimator : {'MBAR', 'BAR', 'TI'}
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
Name of the estimators.
xiki-tempula marked this conversation as resolved.
Show resolved Hide resolved
See the important note below on the use of "MBAR".

.. deprecated:: 1.0.0
Lower case input is also accepted until release 2.0.0.
num : int
The number of time points.
kwargs : dict
Keyword arguments to be passed to the estimator.

Returns
-------
Expand All @@ -43,29 +52,40 @@ def forward_backward_convergence(df_list, estimator='mbar', num=10):
9 3.044149 0.016405 3.044385 0.016402 1.0


Note
-----
:class:`~alchemlyb.estimators.AutoMBAR` is used when ``estimator='MBAR'``,
supply ``method`` keyword to restore the behavior of
:class:`~alchemlyb.estimators.MBAR`.
(:code:`forward_backward_convergence(u_nk, 'MBAR', num=2, method='adaptive')`)


.. versionadded:: 0.6.0
.. versionchanged:: 1.0.0
The ``estimator`` accepts uppercase input.
The default for using ``estimator='MBAR'`` was changed from
:class:`~alchemlyb.estimators.MBAR` to :class:`~alchemlyb.estimators.AutoMBAR`.

'''
logger = logging.getLogger('alchemlyb.convergence.'
'forward_backward_convergence')
logger.info('Start convergence analysis.')
logger.info('Check data availability.')
if estimator.upper() != estimator:
warn("Using lower-case strings for the 'estimator' kwarg in "
"convergence.forward_backward_convergence() is deprecated in "
"1.0.0 and only upper case will be accepted in 2.0.0",
DeprecationWarning)
estimator = estimator.upper()

if estimator.lower() == 'mbar':
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
logger.info('Use MBAR estimator for convergence analysis.')
estimator_fit = MBAR().fit
elif estimator.lower() == 'autombar':
logger.info('Use AutoMBAR estimator for convergence analysis.')
estimator_fit = AutoMBAR().fit
elif estimator.lower() == 'bar':
logger.info('Use BAR estimator for convergence analysis.')
estimator_fit = BAR().fit
elif estimator.lower() == 'ti':
logger.info('Use TI estimator for convergence analysis.')
estimator_fit = TI().fit
if estimator not in (FEP_ESTIMATORS + TI_ESTIMATORS):
msg = f"Estimator {estimator} is not available in {FEP_ESTIMATORS + TI_ESTIMATORS}."
logger.error(msg)
raise ValueError(msg)
else:
raise ValueError(
'{} is not a valid estimator.'.format(estimator))
# select estimator class by name
estimator_fit = globals()[estimator](**kwargs).fit
logger.info(f'Use {estimator} estimator for convergence analysis.')

logger.info('Begin forward analysis')
forward_list = []
Expand Down
3 changes: 3 additions & 0 deletions src/alchemlyb/estimators/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
from .mbar_ import MBAR, AutoMBAR
from .bar_ import BAR
from .ti_ import TI

FEP_ESTIMATORS = [MBAR.__name__, AutoMBAR.__name__, BAR.__name__]
TI_ESTIMATORS = [TI.__name__]
48 changes: 32 additions & 16 deletions src/alchemlyb/estimators/mbar_.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,17 @@ class AutoMBAR(MBAR):
:class:`AutoMBAR` may be useful in high-throughput calculations where it can avoid
failures due non-converged MBAR estimates.

Parameters
----------

method : str, optional, default=None
The optimization routine to use. This parameter defaults to ``None``.
When a specific method is set, AutoMBAR will behave in the same way
as MBAR.
xiki-tempula marked this conversation as resolved.
Show resolved Hide resolved

.. versionadded:: 1.0.0


Note
----
All arguments are described under :class:`MBAR` except that the solver method
Expand All @@ -163,30 +174,35 @@ class AutoMBAR(MBAR):


.. versionadded:: 0.6.0
.. versionchanged:: 1.0.0
AutoMBAR accepts the `method` argument.
"""
def __init__(self, maximum_iterations=10000, relative_tolerance=1.0e-7,
initial_f_k=None, verbose=False):
initial_f_k=None, verbose=False, method=None):
super().__init__(maximum_iterations=maximum_iterations,
relative_tolerance=relative_tolerance,
initial_f_k=initial_f_k,
verbose=verbose, method=None)
verbose=verbose, method=method)
self.logger = logging.getLogger('alchemlyb.estimators.AutoMBAR')

def _do_MBAR(self, u_nk, N_k, solver_protocol):
self.logger.info('Initialise the automatic routine of the MBAR '
'estimator.')
# Try the fastest method first
try:
self.logger.info('Trying the hybr method.')
solver_protocol["method"] = 'hybr'
mbar, out = super()._do_MBAR(u_nk, N_k, solver_protocol)
except pymbar.utils.ParameterError:
if solver_protocol["method"] is None:
self.logger.info('Initialise the automatic routine of the MBAR '
'estimator.')
# Try the fastest method first
try:
self.logger.info('Trying the adaptive method.')
solver_protocol["method"] = 'adaptive'
self.logger.info('Trying the hybr method.')
solver_protocol["method"] = 'hybr'
mbar, out = super()._do_MBAR(u_nk, N_k, solver_protocol)
except pymbar.utils.ParameterError:
self.logger.info('Trying the BFGS method.')
solver_protocol["method"] = 'BFGS'
mbar, out = super()._do_MBAR(u_nk, N_k, solver_protocol)
return mbar, out
try:
self.logger.info('Trying the adaptive method.')
solver_protocol["method"] = 'adaptive'
mbar, out = super()._do_MBAR(u_nk, N_k, solver_protocol)
except pymbar.utils.ParameterError:
self.logger.info('Trying the BFGS method.')
solver_protocol["method"] = 'BFGS'
mbar, out = super()._do_MBAR(u_nk, N_k, solver_protocol)
return mbar, out
else:
return super()._do_MBAR(u_nk, N_k, solver_protocol)
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
Loading