-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththread.c
726 lines (608 loc) · 19.6 KB
/
thread.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#include "threads/thread.h"
#include <debug.h>
#include <stddef.h>
#include <random.h>
#include <stdio.h>
#include <string.h>
#include "threads/flags.h"
#include "threads/interrupt.h"
#include "threads/intr-stubs.h"
#include "threads/palloc.h"
#include "threads/switch.h"
#include "threads/synch.h"
#include "threads/vaddr.h"
#ifdef USERPROG
#include "userprog/process.h"
#endif
/* Random value for struct thread's `magic' member.
Used to detect stack overflow. See the big comment at the top
of thread.h for details. */
#define THREAD_MAGIC 0xcd6abf4b
/* List of all processes. Processes are added to this list
when they are first scheduled and removed when they exit. */
static struct list all_list;
/* List of processes in THREAD_READY state, that is, processes
that are ready to run but not actually running. */
static struct list ready_list;
/* Idle thread. */
static struct thread *idle_thread;
/* Initial thread, the thread running init.c:main(). */
static struct thread *initial_thread;
/* Lock used by allocate_tid(). */
static struct lock tid_lock;
/* Average load. */
fp load_avg;
/* Stack frame for kernel_thread(). */
struct kernel_thread_frame
{
void *eip; /* Return address. */
thread_func *function; /* Function to call. */
void *aux; /* Auxiliary data for function. */
};
/* Statistics. */
static long long idle_ticks; /* # of timer ticks spent idle. */
static long long kernel_ticks; /* # of timer ticks in kernel threads. */
static long long user_ticks; /* # of timer ticks in user programs. */
/* Scheduling. */
#define TIME_SLICE 4 /* # of timer ticks to give each thread. */
static unsigned thread_ticks; /* # of timer ticks since last yield. */
/* If false (default), use round-robin scheduler.
If true, use multi-level feedback queue scheduler.
Controlled by kernel command-line option "-o mlfqs". */
bool thread_mlfqs;
static void kernel_thread (thread_func *, void *aux);
static void idle (void *aux UNUSED);
static struct thread *running_thread (void);
static struct thread *next_thread_to_run (void);
static void init_thread (struct thread *, const char *name, int priority);
static bool is_thread (struct thread *) UNUSED;
static void *alloc_frame (struct thread *, size_t size);
static void schedule (void);
void thread_schedule_tail (struct thread *prev);
static tid_t allocate_tid (void);
/* Initializes the threading system by transforming the code
that's currently running into a thread. This can't work in
general and it is possible in this case only because loader.S
was careful to put the bottom of the stack at a page boundary.
Also initializes the run queue and the tid lock.
After calling this function, be sure to initialize the page
allocator before trying to create any threads with
thread_create().
It is not safe to call thread_current() until this function
finishes. */
void
thread_init (void)
{
ASSERT (intr_get_level () == INTR_OFF);
lock_init (&tid_lock);
list_init (&ready_list);
list_init (&all_list);
/* Set up a thread structure for the running thread. */
initial_thread = running_thread ();
init_thread (initial_thread, "main", PRI_DEFAULT);
initial_thread->status = THREAD_RUNNING;
initial_thread->tid = allocate_tid ();
initial_thread->sleep_tick = 0;
}
/* Starts preemptive thread scheduling by enabling interrupts.
Also creates the idle thread. */
void
thread_start (void)
{
/* Create the idle thread. */
struct semaphore idle_started;
sema_init (&idle_started, 0);
thread_create ("idle", PRI_MIN, idle, &idle_started);
load_avg = FP(0);
/* Start preemptive thread scheduling. */
intr_enable ();
/* Wait for the idle thread to initialize idle_thread. */
sema_down (&idle_started);
}
/* Called by the timer interrupt handler at each timer tick.
Thus, this function runs in an external interrupt context. */
void
thread_tick (void)
{
struct thread *t = thread_current ();
/* Update statistics. */
if (t == idle_thread)
idle_ticks++;
#ifdef USERPROG
else if (t->pagedir != NULL)
user_ticks++;
#endif
else
kernel_ticks++;
/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE)
intr_yield_on_return ();
}
/* Prints thread statistics. */
void
thread_print_stats (void)
{
printf ("Thread: %lld idle ticks, %lld kernel ticks, %lld user ticks\n",
idle_ticks, kernel_ticks, user_ticks);
}
/* Creates a new kernel thread named NAME with the given initial
PRIORITY, which executes FUNCTION passing AUX as the argument,
and adds it to the ready queue. Returns the thread identifier
for the new thread, or TID_ERROR if creation fails.
If thread_start() has been called, then the new thread may be
scheduled before thread_create() returns. It could even exit
before thread_create() returns. Contrariwise, the original
thread may run for any amount of time before the new thread is
scheduled. Use a semaphore or some other form of
synchronization if you need to ensure ordering.
The code provided sets the new thread's `priority' member to
PRIORITY, but no actual priority scheduling is implemented.
Priority scheduling is the goal of Problem 1-3. */
tid_t
thread_create (const char *name, int priority,
thread_func *function, void *aux)
{
struct thread *t;
struct kernel_thread_frame *kf;
struct switch_entry_frame *ef;
struct switch_threads_frame *sf;
tid_t tid;
ASSERT (function != NULL);
/* Allocate thread. */
t = palloc_get_page (PAL_ZERO);
if (t == NULL)
return TID_ERROR;
/* Initialize thread. */
init_thread (t, name, priority);
tid = t->tid = allocate_tid ();
/* Stack frame for kernel_thread(). */
kf = alloc_frame (t, sizeof *kf);
kf->eip = NULL;
kf->function = function;
kf->aux = aux;
/* Stack frame for switch_entry(). */
ef = alloc_frame (t, sizeof *ef);
ef->eip = (void (*) (void)) kernel_thread;
/* Stack frame for switch_threads(). */
sf = alloc_frame (t, sizeof *sf);
sf->eip = switch_entry;
sf->ebp = 0;
/* Add to run queue. */
thread_unblock (t);
/* Run new thread if its priority is higher than the current one. */
if (priority > thread_current ()->priority)
thread_yield ();
return tid;
}
/* Puts the current thread to sleep. It will not be scheduled
again until awoken by thread_unblock().
This function must be called with interrupts turned off. It
is usually a better idea to use one of the synchronization
primitives in synch.h. */
void
thread_block (void)
{
ASSERT (!intr_context ());
ASSERT (intr_get_level () == INTR_OFF);
thread_current ()->status = THREAD_BLOCKED;
schedule ();
}
/* Transitions a blocked thread T to the ready-to-run state.
This is an error if T is not blocked. (Use thread_yield() to
make the running thread ready.)
This function does not preempt the running thread. This can
be important: if the caller had disabled interrupts itself,
it may expect that it can atomically unblock a thread and
update other data. */
void
thread_unblock (struct thread *t)
{
enum intr_level old_level;
ASSERT (is_thread (t));
old_level = intr_disable ();
ASSERT (t->status == THREAD_BLOCKED);
list_insert_ordered (&ready_list, &t->elem, thread_compare_priority, NULL);
t->status = THREAD_READY;
intr_set_level (old_level);
}
/* Returns the name of the running thread. */
const char *
thread_name (void)
{
return thread_current ()->name;
}
/* Returns the running thread.
This is running_thread() plus a couple of sanity checks.
See the big comment at the top of thread.h for details. */
struct thread *
thread_current (void)
{
struct thread *t = running_thread ();
/* Make sure T is really a thread.
If either of these assertions fire, then your thread may
have overflowed its stack. Each thread has less than 4 kB
of stack, so a few big automatic arrays or moderate
recursion can cause stack overflow. */
ASSERT (is_thread (t));
ASSERT (t->status == THREAD_RUNNING);
return t;
}
/* Returns the running thread's tid. */
tid_t
thread_tid (void)
{
return thread_current ()->tid;
}
/* Deschedules the current thread and destroys it. Never
returns to the caller. */
void
thread_exit (void)
{
ASSERT (!intr_context ());
#ifdef USERPROG
process_exit ();
#endif
/* Remove thread from all threads list, set our status to dying,
and schedule another process. That process will destroy us
when it calls thread_schedule_tail(). */
intr_disable ();
list_remove (&thread_current()->allelem);
thread_current ()->status = THREAD_DYING;
schedule ();
NOT_REACHED ();
}
/* Yields the CPU. The current thread is not put to sleep and
may be scheduled again immediately at the scheduler's whim. */
void
thread_yield (void)
{
struct thread *cur = thread_current ();
enum intr_level old_level;
ASSERT (!intr_context ());
old_level = intr_disable ();
if (cur != idle_thread)
{
if (!list_empty (&ready_list))
{
struct thread *next = list_entry (list_front (&ready_list), struct thread, elem);
if (next->priority >= cur->priority)
{
list_insert_ordered (&ready_list, &cur->elem, thread_compare_priority, NULL);
cur->status = THREAD_READY;
schedule ();
}
}
}
intr_set_level (old_level);
}
/* Invoke function 'func' on all threads, passing along 'aux'.
This function must be called with interrupts off. */
void
thread_foreach (thread_action_func *func, void *aux)
{
struct list_elem *e;
ASSERT (intr_get_level () == INTR_OFF);
for (e = list_begin (&all_list); e != list_end (&all_list);
e = list_next (e))
{
struct thread *t = list_entry (e, struct thread, allelem);
func (t, aux);
}
}
/* Sets the current thread's priority to NEW_PRIORITY. */
void
thread_set_priority (int new_priority)
{
enum intr_level old_level;
int old_priority;
if (thread_mlfqs)
return;
old_level = intr_disable ();
thread_current ()->init_priority = new_priority;
if (list_empty (&thread_current ()->lock_hold) ||
new_priority > thread_current ()->priority)
{
thread_current ()->priority = new_priority;
thread_yield ();
}
intr_set_level (old_level);
}
/* Returns the current thread's priority. */
int
thread_get_priority (void)
{
return thread_current ()->priority;
}
/* Donate priority to the thread holding the lock. */
void thread_donate_priority (struct thread *t)
{
enum intr_level old_level;
old_level = intr_disable ();
thread_update_priority (t);
if (t->status == THREAD_READY)
{
list_remove (&t->elem);
list_insert_ordered (&ready_list, &t->elem,
thread_compare_priority, NULL);
}
intr_set_level (old_level);
}
/* Update a thread's priority for donation and lock release. */
void
thread_update_priority (struct thread *t)
{
enum intr_level old_level;
int priority;
int lock_priority;
old_level = intr_disable ();
priority = t->init_priority;
if (!list_empty (&t->lock_hold))
{
list_sort (&t->lock_hold, lock_compare_priority, NULL);
lock_priority = list_entry (list_front (&t->lock_hold),
struct lock, elem)->priority;
if (lock_priority > priority)
priority = lock_priority;
}
t->priority = priority;
intr_set_level (old_level);
}
/* Update priority when mlfqs available. */
void
thread_update_priority_mlfqs (struct thread *t)
{
if (t == idle_thread)
return;
ASSERT (thread_mlfqs);
t->priority = INTFP (FPISUB (FPSUB (FP (PRI_MAX), FPIDIV (t->recent_cpu, 4)), 2 * t->nice));
if (t->priority < PRI_MIN)
t->priority = PRI_MIN;
if (t->priority > PRI_MAX)
t->priority = PRI_MAX;
}
/* Compare the priority of two threads. */
bool
thread_compare_priority (const struct list_elem *a,
const struct list_elem *b, void *aux UNUSED)
{
struct thread *t1 = list_entry (a, struct thread, elem);
struct thread *t2 = list_entry (b, struct thread, elem);
return t1->priority > t2->priority;
}
/* Sets the current thread's nice value to NICE. */
void
thread_set_nice (int nice)
{
thread_current ()->nice = nice;
thread_update_priority_mlfqs (thread_current ());
thread_yield ();
}
/* Returns the current thread's nice value. */
int
thread_get_nice (void)
{
return thread_current ()->nice;
}
/* Returns 100 times the system load average. */
int
thread_get_load_avg (void)
{
return FPINT (FPIMUL (load_avg, 100));
}
/* Returns 100 times the current thread's recent_cpu value. */
int
thread_get_recent_cpu (void)
{
return FPINT (FPIMUL (thread_current ()->recent_cpu, 100));
}
/* Add recent_cpu by 1 at every time tick. */
void
thread_recent_cpu_add (void)
{
ASSERT (thread_mlfqs);
struct thread *t = thread_current ();
if (t == idle_thread)
return;
t->recent_cpu = FPIADD (t->recent_cpu, 1);
}
/* Update recent_cpu and load_avg every 100 time ticks. */
void
thread_update_load_avg (void)
{
struct thread *t;
struct list_elem *e;
size_t ready = list_size (&ready_list);
ASSERT (thread_mlfqs)
if (thread_current () != idle_thread)
ready++;
load_avg = FPADD (FPIDIV (FPIMUL (load_avg, 59), 60), FPIDIV (FP (ready), 60));
e = list_front (&all_list);
for (e; e != list_end (&all_list); e = list_next (e);
{
t = list_entry (e, struct thread, allelem);
if (t != idle_thread)
{
t->recent_cpu = FPIADD (FPMUL (FPDIV (FPIMUL (load_avg, 2),
FPIADD (FPIMUL (load_avg, 2), 1)), t->recent_cpu), t->nice);
thread_update_priority_mlfqs (t);
}
}
}
/* Idle thread. Executes when no other thread is ready to run.
The idle thread is initially put on the ready list by
thread_start(). It will be scheduled once initially, at which
point it initializes idle_thread, "up"s the semaphore passed
to it to enable thread_start() to continue, and immediately
blocks. After that, the idle thread never appears in the
ready list. It is returned by next_thread_to_run() as a
special case when the ready list is empty. */
static void
idle (void *idle_started_ UNUSED)
{
struct semaphore *idle_started = idle_started_;
idle_thread = thread_current ();
sema_up (idle_started);
for (;;)
{
/* Let someone else run. */
intr_disable ();
thread_block ();
/* Re-enable interrupts and wait for the next one.
The `sti' instruction disables interrupts until the
completion of the next instruction, so these two
instructions are executed atomically. This atomicity is
important; otherwise, an interrupt could be handled
between re-enabling interrupts and waiting for the next
one to occur, wasting as much as one clock tick worth of
time.
See [IA32-v2a] "HLT", [IA32-v2b] "STI", and [IA32-v3a]
7.11.1 "HLT Instruction". */
asm volatile ("sti; hlt" : : : "memory");
}
}
/* Function used as the basis for a kernel thread. */
static void
kernel_thread (thread_func *function, void *aux)
{
ASSERT (function != NULL);
intr_enable (); /* The scheduler runs with interrupts off. */
function (aux); /* Execute the thread function. */
thread_exit (); /* If function() returns, kill the thread. */
}
/* Returns the running thread. */
struct thread *
running_thread (void)
{
uint32_t *esp;
/* Copy the CPU's stack pointer into `esp', and then round that
down to the start of a page. Because `struct thread' is
always at the beginning of a page and the stack pointer is
somewhere in the middle, this locates the curent thread. */
asm ("mov %%esp, %0" : "=g" (esp));
return pg_round_down (esp);
}
/* Returns true if T appears to point to a valid thread. */
static bool
is_thread (struct thread *t)
{
return t != NULL && t->magic == THREAD_MAGIC;
}
/* Does basic initialization of T as a blocked thread named
NAME. */
static void
init_thread (struct thread *t, const char *name, int priority)
{
enum intr_level old_level;
ASSERT (t != NULL);
ASSERT (PRI_MIN <= priority && priority <= PRI_MAX);
ASSERT (name != NULL);
memset (t, 0, sizeof *t);
t->status = THREAD_BLOCKED;
strlcpy (t->name, name, sizeof t->name);
t->stack = (uint8_t *) t + PGSIZE;
t->priority = priority;
t->init_priority = priority;
t->sleep_tick = 0;
list_init (&t->lock_hold);
t->lock_acquire = NULL;
t->nice = 0;
t->recent_cpu = FP(0);
t->magic = THREAD_MAGIC;
old_level = intr_disable ();
list_insert_ordered (&all_list, &t->allelem, thread_compare_priority, NULL);
intr_set_level (old_level);
}
/* Allocates a SIZE-byte frame at the top of thread T's stack and
returns a pointer to the frame's base. */
static void *
alloc_frame (struct thread *t, size_t size)
{
/* Stack data is always allocated in word-size units. */
ASSERT (is_thread (t));
ASSERT (size % sizeof (uint32_t) == 0);
t->stack -= size;
return t->stack;
}
/* Chooses and returns the next thread to be scheduled. Should
return a thread from the run queue, unless the run queue is
empty. (If the running thread can continue running, then it
will be in the run queue.) If the run queue is empty, return
idle_thread. */
static struct thread *
next_thread_to_run (void)
{
if (list_empty (&ready_list))
return idle_thread;
else
return list_entry (list_pop_front (&ready_list), struct thread, elem);
}
/* Completes a thread switch by activating the new thread's page
tables, and, if the previous thread is dying, destroying it.
At this function's invocation, we just switched from thread
PREV, the new thread is already running, and interrupts are
still disabled. This function is normally invoked by
thread_schedule() as its final action before returning, but
the first time a thread is scheduled it is called by
switch_entry() (see switch.S).
It's not safe to call printf() until the thread switch is
complete. In practice that means that printf()s should be
added at the end of the function.
After this function and its caller returns, the thread switch
is complete. */
void
thread_schedule_tail (struct thread *prev)
{
struct thread *cur = running_thread ();
ASSERT (intr_get_level () == INTR_OFF);
/* Mark us as running. */
cur->status = THREAD_RUNNING;
/* Start new time slice. */
thread_ticks = 0;
#ifdef USERPROG
/* Activate the new address space. */
process_activate ();
#endif
/* If the thread we switched from is dying, destroy its struct
thread. This must happen late so that thread_exit() doesn't
pull out the rug under itself. (We don't free
initial_thread because its memory was not obtained via
palloc().) */
if (prev != NULL && prev->status == THREAD_DYING && prev != initial_thread)
{
ASSERT (prev != cur);
palloc_free_page (prev);
}
}
/* Schedules a new process. At entry, interrupts must be off and
the running process's state must have been changed from
running to some other state. This function finds another
thread to run and switches to it.
It's not safe to call printf() until thread_schedule_tail()
has completed. */
static void
schedule (void)
{
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run ();
struct thread *prev = NULL;
ASSERT (intr_get_level () == INTR_OFF);
ASSERT (cur->status != THREAD_RUNNING);
ASSERT (is_thread (next));
if (cur != next)
prev = switch_threads (cur, next);
thread_schedule_tail (prev);
}
/* Returns a tid to use for a new thread. */
static tid_t
allocate_tid (void)
{
static tid_t next_tid = 1;
tid_t tid;
lock_acquire (&tid_lock);
tid = next_tid++;
lock_release (&tid_lock);
return tid;
}
/* Offset of `stack' member within `struct thread'.
Used by switch.S, which can't figure it out on its own. */
uint32_t thread_stack_ofs = offsetof (struct thread, stack);