Skip to content

PipelineAI: The Standard Runtime For Every Real-Time Machine Learning and AI Prediction in the Enterprise

License

Notifications You must be signed in to change notification settings

akg003/pipeline

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PipelineAI Home

PipelineAI Home PipelineAI Home 1 PipelineAI Home 2

PipelineAI + AWS SageMaker

PipelineAI is fully compatible with AWS SageMaker.

PipelineAI + SageMaker

Specifically, you can upload PipelineAI-optimized Docker images to your public or private Docker Repo for use with AWS SageMaker's Custom Docker image support.

Click HERE for more details.

PipelineAI + AWS SageMaker Dashboard

PipelineAI + AWS SageMaker Overview

PipelineAI Open Source

PipelineAI Resources

PipelineAI Products

Community Edition

Standalone Edition

Enterprise Edition

PipelineAI Features

Consistent, Immutable, Reproducible Model Runtimes

Consistent Model Environments

Each model is built into a separate Docker image with the appropriate Python, C++, and Java/Scala Runtime Libraries for training or prediction.

Use the same Docker Image from Local Laptop to Production to avoid dependency surprises.

Sample Machine Learning and AI Models

Click HERE to view model samples for the following:

  • Scikit-Learn
  • TensorFlow
  • Keras
  • Spark ML (formerly called Spark MLlib)
  • Xgboost
  • PMML/PFA
  • Custom Java
  • Custom Python
  • Model Ensembles

Nvidia GPU TensorFlow

Spark ML Scikit-Learn

R PMML

Xgboost Ensembles

Coming Soon: Support for Amazon MXNet, Microsoft CNTK, and ONNX

Supported Model Runtimes (CPU and GPU)

  • Python
  • Java
  • Scala
  • C++
  • Caffe2
  • Theano
  • TensorFlow Serving (TensorFlow)
  • Nvidia TensorRT (TensorFlow, Caffe2)

Coming Soon: Amazon MXNet, Microsoft CNTK, and ONNX

Step 0: Install PipelineAI CLI

Pre-Requisites

Docker

Python2 or Python3 (Conda is Optional)

  • Install Miniconda with Python 2 or 3 (Preferred) Support

(Windows Only) Install PowerShell

Install CLI

Notes:

  • This command line interface requires Python 2 or 3 and Docker as detailed above in the Pre-Requisites section.
pip install cli-pipeline==1.5.3 --user --ignore-installed --no-cache -U

Verify Successful PipelineAI CLI Installation

pipeline version

### EXPECTED OUTPUT ###
cli_version: 1.5.x    <-- MAKE SURE THIS MATCHES THE VERSION YOU INSTALLED ABOVE

default train base image: docker.io/pipelineai/train-cpu:1.5.0     
default predict base image: docker.io/pipelineai/predict-cpu:1.5.0 

capabilities_enabled: ['train-server', 'train-kube', 'train-sage', 'predict-server', 'predict-kube', 'predict-sage', 'predict-kafka']
capabilities_available: ['optimize', 'jupyter', 'spark', 'airflow', 'kafka']

Email [email protected] to enable the advanced capabilities.

PipelineAI CLI Overview

pipeline

### EXPECTED OUTPUT ###
...
Usage:       pipeline                             <-- This List of CLI Commands
             
             pipeline predict-http-test           <-- Test Model Cluster (Http Endpoint)

             pipeline predict-kafka-consume       <-- Consume Kafka Predictions
             pipeline predict-kafka-describe      <-- Describe Kafka Prediction Cluster
             pipeline predict-kafka-start         <-- Start Kafka Prediction Cluster
             pipeline predict-kafka-test          <-- Test Model Cluster (Kafka Endpoint)

             pipeline predict-kube-autoscale      <-- Configure AutoScaling for Model Cluster
             pipeline predict-kube-connect        <-- Create Secure Tunnel to Model Cluster 
             pipeline predict-kube-describe       <-- Describe Model Cluster
             pipeline predict-kube-logs           <-- View Model Cluster Logs 
             pipeline predict-kube-route          <-- Route Live Traffic  
             pipeline predict-kube-scale          <-- Scale Model Cluster
             pipeline predict-kube-shell          <-- Shell into Model Cluster
             pipeline predict-kube-start          <-- Start Model Cluster from Docker Registry
             pipeline predict-kube-status         <-- Status of Model Cluster
             pipeline predict-kube-stop           <-- Stop Model Cluster
             pipeline predict-kube-test           <-- Test Model Cluster

             pipeline predict-sage-route          <-- Route Live Traffic (SageMaker)
             pipeline predict-sage-start          <-- Start Model Cluster from Docker Registry (SageMaker)
             pipeline predict-sage-test           <-- Test Model Cluster (SageMaker)

             pipeline predict-server-build        <-- Build Model Server
             pipeline predict-server-logs         <-- View Model Server Logs
             pipeline predict-server-pull         <-- Pull Model Server from Docker Registry
             pipeline predict-server-push         <-- Push Model Server to Docker Registry
             pipeline predict-server-shell        <-- Shell into Model Server (Debugging)
             pipeline predict-server-start        <-- Start Model Server
             pipeline predict-server-stop         <-- Stop Model Server
             pipeline predict-server-test         <-- Test Model Server
             
             pipeline predict-kafka-test          <-- Predict with Kafka-based Model Endpoint 

             pipeline train-kube-connect          <-- Create Secure Tunnel to Training Cluster
             pipeline train-kube-describe         <-- Describe Training Cluster
             pipeline train-kube-logs             <-- View Training Cluster Logs
             pipeline train-kube-scale            <-- Scale Training Cluster
             pipeline train-kube-shell            <-- Shell into Training Cluster
             pipeline train-kube-start            <-- Start Training Cluster from Docker Registry
             pipeline train-kube-status           <-- Status of Training Cluster
             pipeline train-kube-stop             <-- Stop Training Cluster

             pipeline train-server-build          <-- Build Training Server
             pipeline train-server-logs           <-- View Training Server Logs
             pipeline train-server-pull           <-- Pull Training Server from Docker Registry
             pipeline train-server-push           <-- Push Training Server to Docker Registry
             pipeline train-server-shell          <-- Shell into Training Server (Debugging)
             pipeline train-server-start          <-- Start Training Server
             pipeline train-server-stop           <-- Stop Training Server
             
             pipeline version                     <-- View This CLI Version
...

Step 1: Retrieve Sample Models

Clone the PipelineAI Predict Repo

git clone https://github.com/PipelineAI/models

Change into models Directory

cd ./models

Step 2: Train a Model

Inspect Model Directory

ls -l ./tensorflow/census/model

### EXPECTED OUTPUT ###
...
pipeline_conda_environment.yml     <-- Required.  Sets up the conda environment
pipeline_condarc                   <-- Required.  Configure Conda proxy servers (.condarc)
pipeline_setup.sh                  <-- Required.  Init script performed upon Docker build
pipeline_train.py                  <-- Required.  `main()` is required. Pass args with `--train-args`
...

Build Training Server

pipeline train-server-build --model-type=tensorflow --model-name=census --model-tag=a --model-path=./tensorflow/census/model

Notes:

  • --model-path must be relative. On Windows, be sure to use the forward slash \ for --model-path.
  • If you see CondaHTTPError: HTTP 000 CONNECTION FAILED for url or [Errno 111] Connection refused' or ConnectionError(MaxRetryError("HTTPSConnectionPool, you need to update ./tensorflow/census/model/pipeline_condarc to include proxy servers per THIS document.
  • For pip installs, you may also need to export HTTP_PROXY and export HTTPS_PROXY within ./tensorflow/census/model/pipeline_setup.sh

Start Training Server

pipeline train-server-start --model-type=tensorflow --model-name=census --model-tag=a --input-path=./tensorflow/census/input --output-path=./tensorflow/census/output --train-args="--train-files=training/adult.training.csv\ --eval-files=validation/adult.validation.csv\ --num-epochs=2\ --learning-rate=0.025"

Notes:

  • --train-args is a single argument passed into the pipeline_train.py. Therefore, you must escape spaces (\ ) between arguments.
  • --input-path and --output-path are relative to the current working directory (outside the Docker container) and will be mapped as directories inside the Docker container from /root.
  • --train-files and --eval-files are relative to --input-path inside the Docker container.
  • Models, logs, and event are written to --output-path (or a subdirectory within). These will be available outside of the Docker container.
  • To prevent overwriting the output of a previous run, you should either 1) change the --output-path between calls or 2) create a new unique subfolder with --output-path in your pipeline_train.py (ie. timestamp). See examples below.
  • On Windows, be sure to use the forward slash \ for --input-path and --output-path (not the args inside of --train-args).
  • If you see port is already allocated or already in use by container, you already have a container running. List and remove any conflicting containers. For example, docker ps and/or docker rm -f train-census-a-tensorflow-tfserving-cpu.

(We are working on making this more intuitive.)

View Training Logs

pipeline train-server-logs --model-type=tensorflow --model-name=census --model-tag=a

Press Ctrl-C to exit out of the logs.

View Trained Model Output (Locally)

Make sure you pressed Ctrl-C to exit out of the logs.

ls -l ./tensorflow/census/output/

### EXPECTED OUTPUT ###
...
drwxr-xr-x  11 cfregly  staff  352 Nov 22 11:20 1511367633 
drwxr-xr-x  11 cfregly  staff  352 Nov 22 11:21 1511367665
drwxr-xr-x  11 cfregly  staff  352 Nov 22 11:22 1511367765 <= Sub-directories of training output
...

Multiple training runs will produce multiple subdirectories - each with a different timestamp.

View Training UI (including TensorBoard for TensorFlow Models)

http://localhost:6006

PipelineAI TensorBoard UI 0

PipelineAI TensorBoard UI 1

PipelineAI TensorBoard UI 2

PipelineAI TensorBoard UI 3

Stop Training Server

pipeline train-server-stop --model-type=tensorflow --model-name=census --model-tag=a

Step 3: Predict with Model

Inspect Model Directory

Note: This is relative to where you cloned the models repo above.

ls -l ./tensorflow/mnist/model

### EXPECTED OUTPUT ###
...
pipeline_conda_environment.yml     <-- Required.  Sets up the conda environment
pipeline_condarc                   <-- Required.  Configure Conda proxy servers (.condarc)
pipeline_predict.py                <-- Required.  `predict(request: bytes) -> bytes` is required
pipeline_setup.sh                  <-- Required.  Init script performed upon Docker build
pipeline_tfserving/                <-- Optional.  Only TensorFlow Serving requires this directory
...

Inspect TensorFlow Serving Model

ls -l ./tensorflow/mnist/model/pipeline_tfserving/

### EXPECTED OUTPUT ###
...
pipeline_tfserving.config  <-- Required by TensorFlow Serving. Custom request-batch sizes, etc.
1510612525/  
1510612528/     <-- TensorFlow Serving finds the latest (highest) version 
...

Build the Model into a Runnable Docker Image

This command bundles the TensorFlow runtime with the model.

pipeline predict-server-build --model-type=tensorflow --model-name=mnist --model-tag=a --model-path=./tensorflow/mnist/model

Notes:

  • --model-path must be relative. On Windows, be sure to use the forward slash \ for --model-path.
  • If you see CondaHTTPError: HTTP 000 CONNECTION FAILED for url or [Errno 111] Connection refused' or ConnectionError(MaxRetryError("HTTPSConnectionPool, you need to update ./tensorflow/census/pipeline_condarc to include proxy servers per THIS document.
  • For pip installs, you may also need to export HTTP_PROXY and export HTTPS_PROXY within ./tensorflow/census/model/pipeline_setup.sh

Start the Model Server

pipeline predict-server-start --model-type=tensorflow --model-name=mnist --model-tag=a --memory-limit=2G

Notes:

  • Ignore the following warning: WARNING: Your kernel does not support swap limit capabilities or the cgroup is not mounted. Memory limited without swap.
  • If you see port is already allocated or already in use by container, you already have a container running. List and remove any conflicting containers. For example, docker ps and/or docker rm -f train-tfserving-tensorflow-mnist-a.
  • You can change the port(s) by specifying the following: --predict-port=8081, --prometheus-port=9001, --grafana-port=3001. (Be sure to change the ports in the examples below to match your new ports.)

Inspect pipeline_predict.py

Note: Only the predict() method is required. Everything else is optional.

cat ./tensorflow/mnist/model/pipeline_predict.py

### EXPECTED OUTPUT ###
import os
import logging
from pipeline_model import TensorFlowServingModel             <-- Optional.  Wraps TensorFlow Serving
from pipeline_monitor import prometheus_monitor as monitor    <-- Optional.  Monitor runtime metrics
from pipeline_logger import log                               <-- Optional.  Log to console, file, kafka

...

__all__ = ['predict']                                         <-- Optional.  Being a good Python citizen.

...

def _initialize_upon_import() -> TensorFlowServingModel:      <-- Optional.  Called once at server startup
    return TensorFlowServingModel(host='localhost',           <-- Optional.  Wraps TensorFlow Serving
                                  port=9000,
                                  model_name=os.environ['PIPELINE_MODEL_NAME'],
                                  inputs_name='inputs',       <-- Optional.  TensorFlow SignatureDef inputs
                                  outputs_name='outputs',     <-- Optional.  TensorFlow SignatureDef outputs
                                  timeout=100)                <-- Optional.  TensorFlow Serving timeout

_model = _initialize_upon_import()                            <-- Optional.  Called once upon server startup

_labels = {'model_runtime': os.environ['PIPELINE_MODEL_RUNTIME'],  <-- Optional.  Tag metrics
           'model_type': os.environ['PIPELINE_MODEL_TYPE'],   
           'model_name': os.environ['PIPELINE_MODEL_NAME'],
           'model_tag': os.environ['PIPELINE_MODEL_TAG']}

_logger = logging.getLogger('predict-logger')                 <-- Optional.  Standard Python logging

@log(labels=_labels, logger=_logger)                          <-- Optional.  Sample and compare predictions
def predict(request: bytes) -> bytes:                         <-- Required.  Called on every prediction

    with monitor(labels=_labels, name="transform_request"):   <-- Optional.  Expose fine-grained metrics
        transformed_request = _transform_request(request)     <-- Optional.  Transform input (json) into TensorFlow (tensor)

    with monitor(labels=_labels, name="predict"):
        predictions = _model.predict(transformed_request)       <-- Optional.  Calls _model.predict()

    with monitor(labels=_labels, name="transform_response"):
        transformed_response = _transform_response(predictions) <-- Optional.  Transform TensorFlow (tensor) into output (json)

    return transformed_response                                 <-- Required.  Returns the predicted value(s)
...

Monitor Runtime Logs

Wait for the model runtime to settle...

pipeline predict-server-logs --model-type=tensorflow --model-name=mnist --model-tag=a

### EXPECTED OUTPUT ###
...
2017-10-10 03:56:00.695  INFO 121 --- [     run-main-0] i.p.predict.jvm.PredictionServiceMain$   : Started PredictionServiceMain. in 7.566 seconds (JVM running for 20.739)
[debug] 	Thread run-main-0 exited.
[debug] Waiting for thread container-0 to terminate.
...
INFO[0050] Completed initial partial maintenance sweep through 4 in-memory fingerprints in 40.002264633s.  source="storage.go:1398"
...

Notes:

  • You need to Ctrl-C out of the log viewing before proceeding.

Perform Prediction

Before proceeding, make sure you hit Ctrl-C after viewing the logs in the previous step.

pipeline predict-server-test --model-endpoint-url=http://localhost:8080/invocations --test-request-path=./tensorflow/mnist/input/predict/test_request.json

### EXPECTED OUTPUT ###
...
('{"variant": "tfserving-cpu-tensorflow-mnist-a", "outputs":{"outputs": '
 '[0.11128007620573044, 1.4478533557849005e-05, 0.43401220440864563, '
 '0.06995827704668045, 0.0028081508353352547, 0.27867695689201355, '
 '0.017851119861006737, 0.006651509087532759, 0.07679300010204315, '
 '0.001954273320734501]}}')
 ...

### FORMATTED OUTPUT ###
Digit  Confidence
=====  ==========
0      0.0022526539396494627
1      2.63791100074684e-10
2      0.4638307988643646      <-- Prediction
3      0.21909376978874207
4      3.2985670372909226e-07
5      0.29357224702835083 
6      0.00019597385835368186
7      5.230629176367074e-05
8      0.020996594801545143
9      5.426473762781825e-06

Notes:

  • You may see 502 Bad Gateway or '{"results":["fallback"]}' if you predict too quickly. Let the server settle a bit - and try again.

  • Instead of localhost, you may need to use 192.168.99.100 or another IP/Host that maps to your local Docker host. This usually happens when using Docker Quick Terminal on Windows 7.

Perform 100 Predictions in Parallel (Mini Load Test)

pipeline predict-server-test --model-endpoint-url=http://localhost:8080/invocations --test-request-path=./tensorflow/mnist/input/predict/test_request.json --test-request-concurrency=100

Notes:

  • Instead of localhost, you may need to use 192.168.99.100 or another IP/Host that maps to your local Docker host. This usually happens when using Docker Quick Terminal on Windows 7.

Predict with REST API

Use the REST API to POST a JSON document representing the number 2.

MNIST 2

curl -X POST -H "Content-Type: application/json" \
  -d '{"image": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05098039656877518, 0.529411792755127, 0.3960784673690796, 0.572549045085907, 0.572549045085907, 0.847058892250061, 0.8156863451004028, 0.9960784912109375, 1.0, 1.0, 0.9960784912109375, 0.5960784554481506, 0.027450982481241226, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.7882353663444519, 0.11764706671237946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.988235354423523, 0.7921569347381592, 0.9450981020927429, 0.545098066329956, 0.21568629145622253, 0.3450980484485626, 0.45098042488098145, 0.125490203499794, 0.125490203499794, 0.03921568766236305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.803921639919281, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6352941393852234, 0.9921569228172302, 0.803921639919281, 0.24705883860588074, 0.3490196168422699, 0.6509804129600525, 0.32156863808631897, 0.32156863808631897, 0.1098039299249649, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007843137718737125, 0.7529412508010864, 0.9921569228172302, 0.9725490808486938, 0.9686275124549866, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.8274510502815247, 0.29019609093666077, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2549019753932953, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.847058892250061, 0.027450982481241226, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5921568870544434, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.7333333492279053, 0.44705885648727417, 0.23137256503105164, 0.23137256503105164, 0.4784314036369324, 0.9921569228172302, 0.9921569228172302, 0.03921568766236305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5568627715110779, 0.9568628072738647, 0.7098039388656616, 0.08235294371843338, 0.019607843831181526, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.43137258291244507, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15294118225574493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1882353127002716, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6705882549285889, 0.9921569228172302, 0.9921569228172302, 0.12156863510608673, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2392157018184662, 0.9647059440612793, 0.9921569228172302, 0.6274510025978088, 0.003921568859368563, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08235294371843338, 0.44705885648727417, 0.16470588743686676, 0.0, 0.0, 0.2549019753932953, 0.9294118285179138, 0.9921569228172302, 0.9333333969116211, 0.27450981736183167, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4941176772117615, 0.9529412388801575, 0.0, 0.0, 0.5803921818733215, 0.9333333969116211, 0.9921569228172302, 0.9921569228172302, 0.4078431725502014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7411764860153198, 0.9764706492424011, 0.5529412031173706, 0.8784314393997192, 0.9921569228172302, 0.9921569228172302, 0.9490196704864502, 0.43529415130615234, 0.007843137718737125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6235294342041016, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9764706492424011, 0.6274510025978088, 0.1882353127002716, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.18431372940540314, 0.5882353186607361, 0.729411780834198, 0.5686274766921997, 0.3529411852359772, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}' \
  http://localhost:8080/invocations \
  -w "\n\n"

### Expected Output ###
{"variant": "tfserving-cpu-tensorflow-mnist-a", "outputs":{"outputs": [0.11128007620573044, 1.4478533557849005e-05, 0.43401220440864563, 0.06995827704668045, 0.0028081508353352547, 0.27867695689201355, 0.017851119861006737, 0.006651509087532759, 0.07679300010204315, 0.001954273320734501]}}

### Formatted Output
Digit  Confidence
=====  ==========
0      0.0022526539396494627
1      2.63791100074684e-10
2      0.4638307988643646      <-- Prediction
3      0.21909376978874207
4      3.2985670372909226e-07
5      0.29357224702835083 
6      0.00019597385835368186
7      5.230629176367074e-05
8      0.020996594801545143
9      5.426473762781825e-06

Notes:

  • Instead of localhost, you may need to use 192.168.99.100 or another IP/Host that maps to your local Docker host. This usually happens when using Docker Quick Terminal on Windows 7.

Monitor Real-Time Prediction Metrics

Re-run the Prediction REST API while watching the following dashboard URL:

http://localhost:8080/dashboard/monitor/monitor.html?streams=%5B%7B%22name%22%3A%22%22%2C%22stream%22%3A%22http%3A%2F%2Flocalhost%3A8080%2Fdashboard.stream%22%2C%22auth%22%3A%22%22%2C%22delay%22%3A%22%22%7D%5D

Notes:

  • Instead of localhost, you may need to use 192.168.99.100 or another IP/Host that maps to your local Docker host. This usually happens when using Docker Quick Terminal on Windows 7.

Real-Time Throughput and Response Time

Monitor Detailed Prediction Metrics

Re-run the Prediction REST API while watching the following detailed metrics dashboard URL.

http://localhost:3000/

Notes:

  • Instead of localhost, you may need to use 192.168.99.100 or another IP/Host that maps to your local Docker host. This usually happens when using Docker Quick Terminal on Windows 7.

Prediction Dashboard

Username/Password: admin/admin

Set Type to Prometheues.

Instead of localhost, you may need to use 192.168.99.100 or another IP/Host that maps to your local Docker host. This usually happens when using Docker Quick Terminal on Windows 7.

Set Url to http://localhost:9090.

Set Access to direct.

Click Save & Test.

Click Dashboards -> Import upper-left menu drop-down.

Copy and Paste THIS raw json file into the paste JSON box.

Select the Prometheus-based data source that you setup above and click Import.

Change the Date Range in the upper right to Last 5m and the Refresh Every to 5s.

Create additional PipelineAI Prediction widgets using THIS guide to the Prometheus Syntax.

Stop Model Server

pipeline predict-server-stop --model-type=tensorflow --model-name=mnist --model-tag=a

Using PipelineAI with AWS SageMaker

PipelineAI is fully compatible with AWS SageMaker.

Specifically, you can upload PipelineAI-optimized Docker images to your private AWS Elastic Container Registry (ECR) for use with AWS SageMaker's Custom Docker image support.

PipelineAI + AWS SageMaker Dashboard

PipelineAI + AWS SageMaker Overview

Upload Docker Image to AWS SageMaker

Follow THESE steps to upload the predict-mnist Docker image above to AWS SageMaker.

Create Model Endpoint

Follow the steps below to create an AWS SageMaker Model Endpoint with the Docker Image uploaded in the previous step.

PipelineAI + AWS SageMaker Model Dashboard

PipelineAI + AWS SageMaker Model Detail 0

PipelineAI + AWS SageMaker Model Detail 1

PipelineAI + AWS SageMaker Model Detail 2

PipelineAI + AWS SageMaker Model Endpoint Configuration

PipelineAI + AWS SageMaker Model Endpoint

PipelineAI + AWS SageMaker Model Endpoint Detail 1

PipelineAI + AWS SageMaker Model Endpoint Detail 2

Create SageMaker Prediction Endpoint

  • aws-iam-arn: arn:aws:iam::...:role/service-role/AmazonSageMaker-ExecutionRole-...
  • aws-instance-type: Click HERE for instance types.
pipeline predict-sage-start --model-name=mnist --model-type=tensorflow --model-tag=a --aws-iam-arn=<full-aws-iam-arn-SageMaker-ExecutionRole> --aws-instance-type=<aws-instance-type>

Perform 100 Predictions in Parallel (Mini Load Test)

Note: This step assumes you have setup your AWS credentials in your environment. Follow THESE steps to setup your AWS credentials for this PipelineAI CLI command.

pipeline predict-sage-test --model-name=mnist --test-request-path=./tensorflow/mnist/input/predict/test_request.json --test-request-concurrency=100

### EXPECTED OUTPUT ###
...
Variant: 'mnist-a-tensorflow-tfserving-cpu'            <-- Variant name (ie. a)

('{"outputs":{"outputs": [0.11128007620573044, 1.4478533557849005e-05, '
 '0.43401220440864563, 0.06995827704668045, 0.0028081508353352547, '
 '0.27867695689201355, 0.017851119861006737, 0.006651509087532759, '
 '0.07679300010204315, 0.001954273320734501]}}')
...

Additional PipelineAI Standalone and Enterprise Features

See below for feature details. Click HERE to compare PipelineAI Products.

Drag N' Drop Model Deploy

PipelineAI Drag n' Drop Model Deploy UI

Generate Optimize Model Versions Upon Upload

Automatic Model Optimization and Native Code Generation

Distributed Model Training and Hyper-Parameter Tuning

PipelineAI Advanced Model Training UI

PipelineAI Advanced Model Training UI 2

Continuously Deploy Models to Clusters of PipelineAI Servers

PipelineAI Weavescope Kubernetes Cluster

View Real-Time Prediction Stream

Live Stream Predictions

Compare Both Offline (Batch) and Real-Time Model Performance

PipelineAI Model Comparison

Compare Response Time, Throughput, and Cost-Per-Prediction

PipelineAI Compare Performance and Cost Per Prediction

Shift Live Traffic to Maximize Revenue and Minimize Cost

PipelineAI Traffic Shift Multi-armed Bandit Maxmimize Revenue Minimize Cost

Continuously Fix Borderline Predictions through Crowd Sourcing

Borderline Prediction Fixing and Crowd Sourcing

About

PipelineAI: The Standard Runtime For Every Real-Time Machine Learning and AI Prediction in the Enterprise

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • HTML 82.6%
  • Jupyter Notebook 16.3%
  • Python 0.6%
  • Scala 0.1%
  • Shell 0.1%
  • Java 0.1%
  • Other 0.2%