Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
arash committed May 20, 2024
1 parent 748abb6 commit e594ef3
Showing 1 changed file with 41 additions and 16 deletions.
57 changes: 41 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,10 @@

## About The Project

This is a toolkit to train a ML model for semantic segmentation of point clouds.

In this repository it is used to make BIM models based on [IfcOpenShell](http://ifcopenshell.org/]) standard from lidar scans.

<a href="https://github.com/ajavanma/RPTU_AI_Toolkit/blob/main">
<img src="media/column.png" alt="Logo" width="490" height="275">
</a>
Expand All @@ -82,32 +86,47 @@



## Getting Started
## Installation

1. Create and activate a conda environment:
```sh
conda create --name mink python=3.8
conda activate mink
0. You can install the Minkowski Engine with `pip`, with anaconda, or on the system directly.
- [PIP](https://github.com/NVIDIA/MinkowskiEngine#pip) installation
- [Conda](https://github.com/NVIDIA/MinkowskiEngine#anaconda) installation
- [Python](https://github.com/NVIDIA/MinkowskiEngine#system-python) installation
- [Docker](https://github.com/NVIDIA/MinkowskiEngine#docker) installation

2. Install Poetry:

1. Install Poetry:
```sh
curl -sSL https://install.python-poetry.org | python3 -

3. Install project dependencies:
poetry install
2. Install project dependencies:
poetry install

3. Set config parameters in config/config.yaml

4. Set config parameters in config/config.yaml file
4. poetry run python src/main.py

5. poetry run python src/main.py

6. python main.py
## Features

- Unlimited high-dimensional sparse tensor support
- All standard neural network layers (Convolution, Pooling, Broadcast, etc.)
- Dynamic computation graph
- Custom kernel shapes
- Multi-GPU training
- Multi-threaded kernel map
- Multi-threaded compilation
- Highly-optimized GPU kernels

### Dependencies

MinkowskiEngine: calculation of sparse tensors
## Requirements

Open3d: manipulation of points (coords), colors and normals
- Ubuntu >= 14.04
- CUDA >= 10.1.243 and **the same CUDA version used for pytorch** (e.g. if you use conda cudatoolkit=11.1, use CUDA=11.1 for MinkowskiEngine compilation)
- pytorch >= 1.7 To specify CUDA version, please use conda for installation. You must match the CUDA version pytorch uses and CUDA version used for Minkowski Engine installation. `conda install -y -c nvidia -c pytorch pytorch=1.8.1 cudatoolkit=10.2`)
- python >= 3.6
- ninja (for installation)
- GCC >= 7.4.0


# Program structure
Expand Down Expand Up @@ -200,12 +219,18 @@ Don't forget to give the project a star! Thanks again!


<!-- ACKNOWLEDGMENTS -->
## Useful links
## Useful links and other projects using Minkowski Engine

* [Point clouds][Point-clouds]
* [Open3d][open3d-url]
* [Minkowski Engine][MinkowskiEngine-url]
- Segmentation: [3D and 4D Spatio-Temporal Semantic Segmentation, CVPR'19](https://github.com/chrischoy/SpatioTemporalSegmentation)
- Representation Learning: [Fully Convolutional Geometric Features, ICCV'19](https://github.com/chrischoy/FCGF)
- 3D Registration: [Learning multiview 3D point cloud registration, CVPR'20](https://arxiv.org/abs/2001.05119)
- 3D Registration: [Deep Global Registration, CVPR'20](https://arxiv.org/abs/2004.11540)
- Pattern Recognition: [High-Dimensional Convolutional Networks for Geometric Pattern Recognition, CVPR'20](https://arxiv.org/abs/2005.08144)
- Detection: [Generative Sparse Detection Networks for 3D Single-shot Object Detection, ECCV'20](https://arxiv.org/abs/2006.12356)
- Image matching: [Sparse Neighbourhood Consensus Networks, ECCV'20](https://www.di.ens.fr/willow/research/sparse-ncnet/)
Expand Down

0 comments on commit e594ef3

Please sign in to comment.