Skip to content

Commit

Permalink
Add a sb3 algo + policy for domains with graph observations
Browse files Browse the repository at this point in the history
- we reuse our stable_baselines3 wrapper
- the policy is extracting features from the graph with a GNN
- the GNN is using pytorch-geometric
- We subclass
  - ActorCriticPolicy:
    - feature extractor = gnn
    - custom conversion of observation to torch to convert into
      torch_geometric.data.Data
  - PPO to handle properly
    - observation conversion
    - rollout buffer
- Current limitations:
  - we extract a fixed number of features (independent of edge/node
    numbers) for now as we end with a feature reduction layer connected
    to a classic mlp (not knowning anything about the current graph structure)
- User input: the user can define (and default choices are made else)
  - the gnn (default to a 2 layers GCN), taking as inputs w.r.t torch_geometric conventions:
    - x: nodes features
    - edge_index: edge indices or sparse transposed adjency matrix
    - edge_attr (optional): edges features
    - edge_weight (optional): edge weights (taken from first dimension
      of edge_attr)
  - the feature reduction layer from the gnn output to the fixed number of features
    (default to global_max_pool + linear layer + relu)
  • Loading branch information
nhuet committed Nov 26, 2024
1 parent e5e4a19 commit 204c1ed
Show file tree
Hide file tree
Showing 18 changed files with 2,059 additions and 28 deletions.
12 changes: 6 additions & 6 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -564,9 +564,9 @@ jobs:
python_version=${{ matrix.python-version }}
wheelfile=$(ls ./wheels/scikit_decide*-cp${python_version/\./}-*win*.whl)
if [ "$python_version" = "3.12" ]; then
pip install ${wheelfile}[all] pytest "pygame>=2.5" optuna "cffi>=1.17"
pip install ${wheelfile}[all] pytest "pygame>=2.5" optuna "cffi>=1.17" graph-jsp-env pytest-cases
else
pip install ${wheelfile}[all] pytest gymnasium[classic-control] optuna
pip install ${wheelfile}[all] pytest gymnasium[classic-control] optuna graph-jsp-env pytest-cases
fi
- name: Test with pytest
Expand Down Expand Up @@ -662,9 +662,9 @@ jobs:
arch=$(uname -m)
wheelfile=$(ls ./wheels/scikit_decide*-cp${python_version/\./}-*macos*${arch}.whl)
if [ "$python_version" = "3.12" ]; then
pip install ${wheelfile}[all] pytest "pygame>=2.5" optuna "cffi>=1.17"
pip install ${wheelfile}[all] pytest "pygame>=2.5" optuna "cffi>=1.17" graph-jsp-env pytest-cases
else
pip install ${wheelfile}[all] pytest gymnasium[classic-control] optuna
pip install ${wheelfile}[all] pytest gymnasium[classic-control] optuna graph-jsp-env pytest-cases
fi
- name: Test with pytest
Expand Down Expand Up @@ -762,9 +762,9 @@ jobs:
python_version=${{ matrix.python-version }}
wheelfile=$(ls ./wheels/scikit_decide*-cp${python_version/\./}-*manylinux*.whl)
if [ "$python_version" = "3.12" ]; then
pip install ${wheelfile}[all] pytest "pygame>=2.5" "cffi>=1.17" docopt commonmark optuna
pip install ${wheelfile}[all] pytest "pygame>=2.5" "cffi>=1.17" docopt commonmark optuna graph-jsp-env pytest-cases
else
pip install ${wheelfile}[all] pytest gymnasium[classic-control] docopt commonmark optuna
pip install ${wheelfile}[all] pytest gymnasium[classic-control] docopt commonmark optuna graph-jsp-env pytest-cases
fi
- name: Test with pytest
Expand Down
140 changes: 140 additions & 0 deletions examples/gnn_sb3_jsp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
from typing import Any

import numpy as np
from graph_jsp_env.disjunctive_graph_jsp_env import DisjunctiveGraphJspEnv
from gymnasium.spaces import Box, Graph, GraphInstance

from skdecide.core import Space, TransitionOutcome, Value
from skdecide.domains import Domain
from skdecide.hub.domain.gym import GymDomain
from skdecide.hub.solver.stable_baselines import StableBaseline
from skdecide.hub.solver.stable_baselines.gnn import GraphPPO
from skdecide.hub.space.gym import GymSpace, ListSpace
from skdecide.utils import rollout

# JSP graph env


class D(Domain):
T_state = GraphInstance # Type of states
T_observation = T_state # Type of observations
T_event = int # Type of events
T_value = float # Type of transition values (rewards or costs)
T_info = None # Type of additional information in environment outcome


class GraphJspDomain(GymDomain, D):
_gym_env: DisjunctiveGraphJspEnv

def __init__(self, gym_env):
GymDomain.__init__(self, gym_env=gym_env)
if self._gym_env.normalize_observation_space:
self.n_nodes_features = gym_env.n_machines + 1
else:
self.n_nodes_features = 2

def _state_step(
self, action: D.T_event
) -> TransitionOutcome[D.T_state, Value[D.T_value], D.T_predicate, D.T_info]:
outcome = super()._state_step(action=action)
outcome.state = self._np_state2graph_state(outcome.state)
return outcome

def _get_applicable_actions_from(
self, memory: D.T_memory[D.T_state]
) -> D.T_agent[Space[D.T_event]]:
return ListSpace(np.nonzero(self._gym_env.valid_action_mask())[0])

def _is_applicable_action_from(
self, action: D.T_agent[D.T_event], memory: D.T_memory[D.T_state]
) -> bool:
return self._gym_env.valid_action_mask()[action]

def _state_reset(self) -> D.T_state:
return self._np_state2graph_state(super()._state_reset())

def _get_observation_space_(self) -> Space[D.T_observation]:
if self._gym_env.normalize_observation_space:
original_graph_space = Graph(
node_space=Box(
low=0.0, high=1.0, shape=(self.n_nodes_features,), dtype=np.float_
),
edge_space=Box(low=0, high=1.0, dtype=np.float_),
)

else:
original_graph_space = Graph(
node_space=Box(
low=np.array([0, 0]),
high=np.array(
[
self._gym_env.n_machines,
self._gym_env.longest_processing_time,
]
),
dtype=np.int_,
),
edge_space=Box(
low=0, high=self._gym_env.longest_processing_time, dtype=np.int_
),
)
return GymSpace(original_graph_space)

def _np_state2graph_state(self, np_state: np.array) -> GraphInstance:
if not self._gym_env.normalize_observation_space:
np_state = np_state.astype(np.int_)

nodes = np_state[:, -self.n_nodes_features :]
adj = np_state[:, : -self.n_nodes_features]
edge_starts_ends = adj.nonzero()
edge_links = np.transpose(edge_starts_ends)
edges = adj[edge_starts_ends][:, None]

return GraphInstance(nodes=nodes, edges=edges, edge_links=edge_links)

def _render_from(self, memory: D.T_memory[D.T_state], **kwargs: Any) -> Any:
return self._gym_env.render(**kwargs)


jsp = np.array(
[
[
[0, 1, 2], # machines for job 0
[0, 2, 1], # machines for job 1
[0, 1, 2], # machines for job 2
],
[
[3, 2, 2], # task durations of job 0
[2, 1, 4], # task durations of job 1
[0, 4, 3], # task durations of job 2
],
]
)


jsp_env = DisjunctiveGraphJspEnv(
jps_instance=jsp,
perform_left_shift_if_possible=True,
normalize_observation_space=False,
flat_observation_space=False,
action_mode="task",
)


# random rollout
domain = GraphJspDomain(gym_env=jsp_env)
rollout(domain=domain, max_steps=jsp_env.total_tasks_without_dummies, num_episodes=1)

# solve with sb3-PPO-GNN
domain_factory = lambda: GraphJspDomain(gym_env=jsp_env)
with StableBaseline(
domain_factory=domain_factory,
algo_class=GraphPPO,
baselines_policy="GraphInputPolicy",
learn_config={"total_timesteps": 100},
# batch_size=1,
# normalize_advantage=False
) as solver:

solver.solve()
rollout(domain=domain_factory(), solver=solver, max_steps=100, num_episodes=1)
204 changes: 204 additions & 0 deletions examples/gnn_sb3_maze.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
from typing import Any, Optional

import numpy as np
from gymnasium.spaces import Box, Discrete, Graph, GraphInstance

from skdecide.builders.domain import Renderable, UnrestrictedActions
from skdecide.core import Space, Value
from skdecide.domains import DeterministicPlanningDomain
from skdecide.hub.domain.maze import Maze
from skdecide.hub.domain.maze.maze import DEFAULT_MAZE, Action, State
from skdecide.hub.solver.stable_baselines import StableBaseline
from skdecide.hub.solver.stable_baselines.gnn import GraphPPO
from skdecide.hub.space.gym import GymSpace, ListSpace
from skdecide.utils import rollout


class D(DeterministicPlanningDomain, UnrestrictedActions, Renderable):
T_state = GraphInstance # Type of states
T_observation = T_state # Type of observations
T_event = Action # Type of events
T_value = float # Type of transition values (rewards or costs)
T_predicate = bool # Type of logical checks
T_info = (
None # Type of additional information given as part of an environment outcome
)


class GraphMaze(D):
def __init__(self, maze_str: str = DEFAULT_MAZE, discrete_features: bool = False):
self.discrete_features = discrete_features
self.maze_domain = Maze(maze_str=maze_str)
np_wall = np.array(self.maze_domain._maze)
np_y = np.array(
[
[(i) for j in range(self.maze_domain._num_cols)]
for i in range(self.maze_domain._num_rows)
]
)
np_x = np.array(
[
[(j) for j in range(self.maze_domain._num_cols)]
for i in range(self.maze_domain._num_rows)
]
)
walls = np_wall.ravel()
coords = [i for i in zip(np_y.ravel(), np_x.ravel())]
np_node_id = np.reshape(range(len(walls)), np_wall.shape)
edge_links = []
edges = []
for i in range(self.maze_domain._num_rows):
for j in range(self.maze_domain._num_cols):
current_coord = (i, j)
if i > 0:
next_coord = (i - 1, j)
edge_links.append(
(np_node_id[current_coord], np_node_id[next_coord])
)
edges.append(np_wall[current_coord] * np_wall[next_coord])
if i < self.maze_domain._num_rows - 1:
next_coord = (i + 1, j)
edge_links.append(
(np_node_id[current_coord], np_node_id[next_coord])
)
edges.append(np_wall[current_coord] * np_wall[next_coord])
if j > 0:
next_coord = (i, j - 1)
edge_links.append(
(np_node_id[current_coord], np_node_id[next_coord])
)
edges.append(np_wall[current_coord] * np_wall[next_coord])
if j < self.maze_domain._num_cols - 1:
next_coord = (i, j + 1)
edge_links.append(
(np_node_id[current_coord], np_node_id[next_coord])
)
edges.append(np_wall[current_coord] * np_wall[next_coord])
self.edges = np.array(edges)
self.edge_links = np.array(edge_links)
self.walls = walls
self.node_ids = np_node_id
self.coords = coords

def _mazestate2graph(self, state: State) -> GraphInstance:
x, y = state
agent_presence = np.zeros(self.walls.shape, dtype=self.walls.dtype)
agent_presence[self.node_ids[y, x]] = 1
nodes = np.stack([self.walls, agent_presence], axis=-1)
if self.discrete_features:
return GraphInstance(
nodes=nodes, edges=self.edges, edge_links=self.edge_links
)
else:
return GraphInstance(
nodes=nodes, edges=self.edges[:, None], edge_links=self.edge_links
)

def _graph2mazestate(self, graph: GraphInstance) -> State:
y, x = self.coords[graph.nodes[:, 1].nonzero()[0][0]]
return State(x=x, y=y)

def _is_terminal(self, state: D.T_state) -> D.T_predicate:
return self.maze_domain._is_terminal(self._graph2mazestate(state))

def _get_next_state(self, memory: D.T_state, action: D.T_event) -> D.T_state:
maze_memory = self._graph2mazestate(memory)
maze_next_state = self.maze_domain._get_next_state(
memory=maze_memory, action=action
)
return self._mazestate2graph(maze_next_state)

def _get_transition_value(
self,
memory: D.T_state,
action: D.T_event,
next_state: Optional[D.T_state] = None,
) -> Value[D.T_value]:
maze_memory = self._graph2mazestate(memory)
if next_state is None:
maze_next_state = None
else:
maze_next_state = self._graph2mazestate(next_state)
return self.maze_domain._get_transition_value(
memory=maze_memory, action=action, next_state=maze_next_state
)

def _get_action_space_(self) -> Space[D.T_event]:
return self.maze_domain._get_action_space_()

def _get_goals_(self) -> Space[D.T_observation]:
return ListSpace([self._mazestate2graph(self.maze_domain._goal)])

def _is_goal(
self, observation: D.T_agent[D.T_observation]
) -> D.T_agent[D.T_predicate]:
return self.maze_domain._is_goal(self._graph2mazestate(observation))

def _get_initial_state_(self) -> D.T_state:
return self._mazestate2graph(self.maze_domain._get_initial_state_())

def _get_observation_space_(self) -> Space[D.T_observation]:
if self.discrete_features:
return GymSpace(
Graph(
node_space=Box(low=0, high=1, shape=(2,), dtype=self.walls.dtype),
edge_space=Discrete(2),
)
)
else:
return GymSpace(
Graph(
node_space=Box(low=0, high=1, shape=(2,), dtype=self.walls.dtype),
edge_space=Box(low=0, high=1, shape=(1,), dtype=self.edges.dtype),
)
)

def _render_from(self, memory: D.T_state, **kwargs: Any) -> Any:
maze_memory = self._graph2mazestate(memory)
self.maze_domain._render_from(memory=maze_memory, **kwargs)


MAZE = """
+-+-+-+-+o+-+-+--+-+-+
| | | |
+ + + +-+-+-+ +--+ + +
| | | | | | | |
+ +-+-+ +-+ + + -+ +-+
| | | | | | |
+ + + + + + + +--+ +-+
| | | | | |
+-+-+-+-+-+-+-+ -+-+ +
| | | |
+ +-+-+-+-+ + +--+-+ +
| | | |
+ + + +-+ +-+ +--+-+-+
| | | | | |
+ +-+-+ + +-+ + -+-+ +
| | | | | | | |
+-+ +-+ + + + +--+ + +
| | | | | | |
+ +-+ +-+-+-+-+ -+ + +
| | | | |
+-+-+-+-+-+x+-+--+-+-+
"""

domain = GraphMaze(maze_str=MAZE, discrete_features=True)
assert domain.reset() in domain.get_observation_space()

# random rollout
rollout(domain=domain, max_steps=50, num_episodes=1)

# solve with sb3-PPO-GNN
domain_factory = lambda: GraphMaze(maze_str=MAZE)
max_steps = domain.maze_domain._num_cols * domain.maze_domain._num_rows
with StableBaseline(
domain_factory=domain_factory,
algo_class=GraphPPO,
baselines_policy="GraphInputPolicy",
learn_config={"total_timesteps": 100},
# batch_size=1,
# normalize_advantage=False
) as solver:

solver.solve()
rollout(domain=domain_factory(), solver=solver, max_steps=max_steps, num_episodes=1)
Loading

0 comments on commit 204c1ed

Please sign in to comment.