Course homepage for "Business Analytics" @Korea University
- Course syllabus: download
- Tutorial resources (2015)
- Tutorial resources (2016)
- Dimensionality Reduction: Overview
- Supervised Methods: Forward selection, Backward elimination, Stepwise selection, Genetic algorithm
- Unsupervised Method (Linear embedding): Principal component analysis (PCA), Multi-dimensional scaling (MDS)
- Unsupervised Method (Nonlinear embedding): ISOMAP, LLE, t-SNE
- Tutorial 1: Supervised Method (장명준)
- Tutorial Video
- Evaluation (Due: 10/18)
- Tutorial 2: Unsupervised Method (Linear embedding) (정재윤, due: 10/18)
- Tutorial Video
- Evaluation (Due: 11/01)
- Tutorial 3: Unsupervised Method (Nonlinear embedding) (서승완, due: 10/25)
- Tutorial Video
- Evaluation (Due: 11/08)
- Theoretical foundation
- Support Vector Machine (SVM)
- Support Vector Regression (SVR)
- Kernel Fisher Discriminant Analysis (KFDA)
- Kernel Principal Component Analysis (KPCA)
- Tutorial 4: Support Vector Machine (SVM) (성유연, due: 11/01)
- Tutorial Video
- Evaluation (Due: 11/15)
- Tutorial 5: Support Vector Regression (SVR) (이민정, due: 11/08)
- Tutorial Video
- Evaluation (Due: 11/29)
- Tutorial 6: Kernel Fisher Discriminant Analysis (KFDA) (조윤상, due: 11/08)
- Tutorial Video
- Evaluation (Due: 11/29)
- Tutorial 7: Kernel Principal Component Analysis (KPCA) (채선율, due: 11/08)
- Tutorial Video
- Evaluation (Due: 11/29)
- Novelty detection: Overview
- Density-based novelty detection
- Distance/Reconstruction-based novelty detection
- Model-based novelty detection
- Applications
- Tutorial 8: Density-based novelty detection (전창동, 오주혁, due: 11/22)
- Tutorial Video
- Evaluation (Due: 12/06)
- Tutorial 9: Distance/Reconstruction-based novelty detection (옥명훈, due: 11/29)
- Tutorial Video
- Evaluation (Due: 12/13)
- Tutorial 10: Model-based novelty detection (송서하, 최현율, due: 11/29)
- Tutorial Video
- Evaluation (Due: 12/13)
- Motivation and theoretical backgrounds
- Bagging
- Boosting: AdaBoost, Gradient Boosting
- Tree-based Ensemble: Random Forests, Decision Jungle
- Tutorial 11: Bagging (이주한, due: 12/6)
- Tutorial Video
- Evaluation (due: 12/27)
- Tutorial 12: AdaBoost, Gradient Boosting (김명소, 송은영, due: 12/13)
- Tutorial Video
- Evaluation (Due: 12/27)
- Tutorial 13: Random Forests, Decision Jungle (임희찬, 권상현, due: 12/13)
- Tutorial Video
- Evaluation (Due: 12/27)
- Overview
- Self-training
- Generative models
- Semi-supervised SVM
- Graph-based SSL
- Multi-view algorithm (Co-training)
- Tutorial 14: Self-training (김우일, due: 12/20)
- Tutorial Video
- Evaluation (Due: 12/27)
- Tutorial 15: Generative models (강성호, due: 12/20)
- Tutorial Video
- Evaluation (Due: 12/27)
- Tutorial 16: Graph-based SSL (안건이, due: 12/27)
- Ipython notebook, Video
- Tutorial 17: Multi-view algorithm (Co-training) (이준헌, due: 12/27)
- Tutorial Video
- Evaluation (Due: 12/31)