Fine-tuning klue/bert-base using KLUE RE dataset.
- KLUE Benchmark Official Webpage
- KLUE Official Github
- Model on Huggingface
- Run KLUE RE on free GPU : Ainize Workspace
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("ainize/klue-bert-base-re")
model = AutoModelForSequenceClassification.from_pretrained("ainize/klue-bert-base-re")
# Add "<subj>", "</subj>" to both ends of the subject object and "<obj>", "</obj>" to both ends of the object object.
sentence = "<subj>손흥민</subj>은 <obj>대한민국</obj>에서 태어났다."
encodings = tokenizer(sentence,
max_length=128,
truncation=True,
padding="max_length",
return_tensors="pt")
outputs = model(**encodings)
logits = outputs['logits']
preds = torch.argmax(logits, dim=1)
- Teachable NLP - Train NLP models with your own text without writing any code
- Ainize - Deploy ML project using free gpu