Skip to content

ainize-team/ainetwork-blockchain-router-for-model-api

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ainize Wrapper Server

Ainize wrapper server is an template backend of AI Model deployed by ainize-js

Requirements

node >= 18

usage

Install

Clone this repository.

git clone [email protected]:ainize-team/ainize-wrapper-server.git

Set env

BLOCKCHAIN_NETWORK= // mainnet = '1', testnet = '0'. 
PRIVATE_KEY= // App owner's private key.
MODEL_URL= // LLM Service endpoint.
INFERENCE_URL= // LLM Inference endpoint.
MODEL_NAME= // Model name.
API_KEY= // API Key to use model. (optional) 
PORT= // Port number to run this server. (default: 3000)

Inference endpoint

The AI model deployed via Ainize automatically sends a POST request to https://YOUR.ENDPOINT.ai/model when an inference request is made, utilizing the trigger function feature of the AI Network blockchain.

You can implement the inference function by modifying app.post('/model', ...) in src/index.ts.

app.post(
  '/model',
  middleware.blockchainTriggerFilter, // Check request is from AI Network.
  async (req: Request, res: Response) => {
  const { appName, requestData, requestKey } = extractDataFromModelRequest(req); // Parse triggered data
  try {
    const model = await ainModule.getModel(appName);
    const amount = 0; // Cost of inference. 
    const responseData = await inference(requestData.prompt); // You need to change this "inference" function to set your model.
    await handleRequest(req, amount, RESPONSE_STATUS.SUCCESS, responseData); // Discount user's credit and write the response data to blockchain.
  } catch(e) {
    console.log('error: ', e);
    await ainize.internal.handleRequest(req, 0, RESPONSE_STATUS.FAIL,'error'); // Write error to response path.
  }
});

Connect Model

If the usage of your AI service is as described below, you can connect your service by simply modifying the .env file. However, if further adjustments are needed, edit src/inference.ts.

export const inference = async (prompt: string): Promise<string> =>{
  const response = await fetch(
    String(process.env.INFERENCE_URL),
    {
      method: 'POST',
      headers: {
        'Content-Type': 'application/json',
        'Authorization': `Bearer ${String(process.env.API_KEY)}`
      },
      body: JSON.stringify({
        model: String(process.env.MODEL_NAME),
        messages: [
          {
            role: 'user',
            content: prompt
          }
        ]
      })
    }
  )
  if (!response.ok) {
    throw new Error(
      `Fail to inference: ${JSON.stringify(await response.json())}`
    );
  }
  const data = await response.json();
  return data.choices[0].message.content;
}