Serving Super Resolution Model Using FastAPI and Celery.
- install dev package.
pip install -r requirements.txt
pip install -r requirements-dev.txt
- install pre-commit.
pre-commit install
- Run RabbitMQ image as a broker
docker run -d --name sr-rabbitmq -p 5672:5672 -p 8080:15672 --restart=unless-stopped rabbitmq:3.9.21-management
- Build docker image
git clone https://github.com/ainize-team/SR-Worker.git
cd SR-Worker
docker build -t sr-worker .
- Run docker image
docker run -d --name <worker_container_name> \
--gpus='"device=0"' -e BROKER_URI=<broker_uri> \
-e DATABASE_URL=<firebase_realtime_database_url> \
-e STORAGE_BUCKET=<firebase_storage_url> \
-v <firebase_credential_path>:/app/key -v <model_local_path>:/app/model \
sr-worker
Or, you can use the env file to run as follows.
docker run -d --name <worker_container_name> \
--gpus='"device=0"' \
--env-file <env filename> \
-v <firebase_credential_path>:/app/key -v <model_local_path>:/app/model \
sr-worker
- Check our SR-FastAPI Repo.