-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
140 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
import torch | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.model_selection import GroupShuffleSplit | ||
from mlguess.preprocessing import load_preprocessing | ||
from torch.utils.data import Dataset | ||
|
||
|
||
class CustomDataset(Dataset): | ||
def __init__(self, conf, split='train'): | ||
config = conf["data"] | ||
data_path = config['data_path'] | ||
input_cols = config['input_cols'] | ||
output_cols = config['output_cols'] | ||
flat_seed = config['split_params']['flat_seed'] | ||
data_seed = config['split_params']['data_seed'] | ||
train_size = config['split_ratios']['train_size'] | ||
valid_size = config['split_ratios']['valid_size'] | ||
|
||
# Load data | ||
data = pd.read_csv(data_path) | ||
data["day"] = data["Time"].apply(lambda x: str(x).split(" ")[0]) | ||
data["year"] = data["Time"].apply(lambda x: str(x).split("-")[0]) | ||
|
||
# Split data into train and test | ||
gsp = GroupShuffleSplit(n_splits=1, random_state=flat_seed, train_size=train_size) | ||
splits = list(gsp.split(data, groups=data["year"])) | ||
train_index, test_index = splits[0] | ||
train_data, self.test_data = data.iloc[train_index].copy(), data.iloc[test_index].copy() | ||
|
||
# Split train data into train and validation | ||
gsp = GroupShuffleSplit(n_splits=1, random_state=flat_seed, train_size=valid_size) | ||
splits = list(gsp.split(train_data, groups=train_data["year"])) | ||
train_index, valid_index = splits[data_seed] | ||
self.train_data, self.valid_data = train_data.iloc[train_index].copy(), train_data.iloc[valid_index].copy() | ||
|
||
# Initialize scalers | ||
self.x_scaler, self.y_scaler = load_preprocessing(conf, seed=conf["seed"]) | ||
|
||
# Fit scalers on training data | ||
self.x_scaler.fit(train_data[input_cols]) | ||
self.y_scaler.fit(train_data[output_cols]) | ||
|
||
# Compute var on the total training data set | ||
self.training_var = [ | ||
np.var(train_data[output_cols].values)#np.var(self.y_scaler.transform(train_data[output_cols])) | ||
for i in range(self.train_data[output_cols].shape[-1]) | ||
] | ||
|
||
# Transform the individual splits | ||
if split == 'train': | ||
self.inputs = self.x_scaler.transform(self.train_data[input_cols]) | ||
self.targets = self.y_scaler.transform(self.train_data[output_cols]) | ||
elif split == 'valid': | ||
self.inputs = self.x_scaler.transform(self.valid_data[input_cols]) | ||
self.targets = self.y_scaler.transform(self.valid_data[output_cols]) | ||
elif split == 'test': | ||
self.inputs = self.x_scaler.transform(self.test_data[input_cols]) | ||
self.targets = self.y_scaler.transform(self.test_data[output_cols]) | ||
else: | ||
raise ValueError("Invalid split value. Choose from 'train', 'valid', 'test'.") | ||
|
||
self.inputs = torch.tensor(self.inputs, dtype=torch.float32) | ||
self.targets = torch.tensor(self.targets, dtype=torch.float32) | ||
|
||
def __len__(self): | ||
return len(self.inputs) | ||
|
||
def __getitem__(self, idx): | ||
x = self.inputs[idx] | ||
y = self.targets[idx] | ||
return x, y | ||
|
||
|
||
if __name__ == "__main__": | ||
# Example configuration dictionary | ||
config = { | ||
"data": { | ||
"data_path": "/glade/p/cisl/aiml/ai2es/surfacelayer/cabauw_derived_data_20210720.csv", | ||
"input_cols": [ | ||
'wind_speed:10_m:m_s-1', | ||
'potential_temperature_skin_change:10_m:K_m-1', | ||
'bulk_richardson:10_m:None', | ||
'mixing_ratio_skin_change:2_m:g_kg-1_m-1' | ||
], | ||
"output_cols": ['friction_velocity:surface:m_s-1'], | ||
"split_params": { | ||
"flat_seed": 42, | ||
"data_seed": 0 | ||
}, | ||
"split_ratios": { | ||
"train_size": 0.9, | ||
"valid_size": 0.885 | ||
}, | ||
"scaler_x": { | ||
"params": { | ||
"copy": True, | ||
"with_mean": True, | ||
"with_std": True | ||
}, | ||
"type": "quantile" | ||
}, | ||
"scaler_y": { | ||
"params": { | ||
"copy": True, | ||
"with_mean": True, | ||
"with_std": True | ||
}, | ||
"type": "normalize" | ||
}, | ||
"batch_size": 9163, | ||
"data_path": '/glade/p/cisl/aiml/ai2es/surfacelayer/cabauw_derived_data_20210720.csv' | ||
}, | ||
"seed": 42 | ||
} | ||
|
||
# Create dataset instances | ||
train_dataset = CustomDataset(config, split='train') | ||
valid_dataset = CustomDataset(config, split='valid') | ||
test_dataset = CustomDataset(config, split='test') | ||
|
||
x, y = train_dataset.__getitem__(0) | ||
|
||
# Create data loaders | ||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config["data"]["batch_size"], shuffle=True) | ||
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=config["data"]["batch_size"], shuffle=False) | ||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=config["data"]["batch_size"], shuffle=False) | ||
|
||
# Print dataset sizes | ||
print(f'Train dataset size: {len(train_dataset)}') | ||
print(f'Validation dataset size: {len(valid_dataset)}') | ||
print(f'Test dataset size: {len(test_dataset)}') | ||
|
||
# Example: Iterate through the train data loader | ||
for batch_idx, (inputs, targets) in enumerate(train_loader): | ||
print(f'Batch {batch_idx + 1}:') | ||
print(f'Inputs: {inputs}') | ||
print(f'Targets: {targets}') | ||
if batch_idx == 1: # Limit to 2 batches for demonstration | ||
break |