-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding data loading for ptype to break dependence on that repo
- Loading branch information
Showing
1 changed file
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import logging | ||
|
||
from sklearn.preprocessing import ( | ||
StandardScaler, | ||
MinMaxScaler, | ||
OneHotEncoder, | ||
LabelEncoder, | ||
RobustScaler, | ||
QuantileTransformer, | ||
) | ||
|
||
from bridgescaler.group import GroupMinMaxScaler, GroupRobustScaler, GroupStandardScaler | ||
from sklearn.model_selection import GroupShuffleSplit | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def load_ptype_uq(conf, data_split=0, verbose=0, drop_mixed=False): | ||
|
||
# Load | ||
df = pd.read_parquet(conf["data_path"]) | ||
|
||
# Drop mixed cases | ||
if drop_mixed: | ||
logger.info("Dropping data points with mixed observations") | ||
c1 = df["ra_percent"] == 1.0 | ||
c2 = df["sn_percent"] == 1.0 | ||
c3 = df["pl_percent"] == 1.0 | ||
c4 = df["fzra_percent"] == 1.0 | ||
condition = c1 | c2 | c3 | c4 | ||
df = df[condition].copy() | ||
|
||
# QC-Filter | ||
qc_value = str(conf["qc"]) | ||
cond1 = df[f"wetbulb{qc_value}_filter"] == 0.0 | ||
cond2 = df["usa"] == 1.0 | ||
dg = df[cond1 & cond2].copy() | ||
|
||
dg["day"] = dg["datetime"].apply(lambda x: str(x).split(" ")[0]) | ||
dg["id"] = range(dg.shape[0]) | ||
|
||
# Select test cases | ||
test_days_c1 = dg["day"].isin( | ||
[day for case in conf["case_studies"].values() for day in case] | ||
) | ||
test_days_c2 = dg["day"] >= conf["test_cutoff"] | ||
test_condition = test_days_c1 | test_days_c2 | ||
|
||
# Partition the data into trainable-only and test-only splits | ||
train_data = dg[~test_condition].copy() | ||
test_data = dg[test_condition].copy() | ||
|
||
# Make N train-valid splits using day as grouping variable, return "data_split" split | ||
gsp = GroupShuffleSplit( | ||
n_splits=conf["ensemble"]["n_splits"], | ||
random_state=conf["seed"], | ||
train_size=conf["train_size1"], | ||
) | ||
splits = list(gsp.split(train_data, groups=train_data["day"])) | ||
|
||
train_index, valid_index = splits[data_split] | ||
train_data, valid_data = ( | ||
train_data.iloc[train_index].copy(), | ||
train_data.iloc[valid_index].copy(), | ||
) | ||
|
||
size = df.shape[0] | ||
logger.info("Train, validation, and test fractions:") | ||
logger.info( | ||
f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" | ||
) | ||
data = {"train": train_data, "val": valid_data, "test": test_data} | ||
|
||
return data | ||
|
||
|
||
def preprocess_data( | ||
data, | ||
input_features, | ||
output_features, | ||
scaler_type="standard", | ||
encoder_type="onehot", | ||
groups=[], | ||
seed=1000, | ||
): | ||
""" | ||
Function to select features and scale data for ML | ||
Args: | ||
data (dictionary of dataframes for training and validation data): | ||
input_features (list): Input features | ||
output_feature (list): Output feature | ||
scaler_type: Type of scaling to perform (supports "standard" and "minmax") | ||
encoder_type: Type of encoder to perform (supports "label" and "onehot") | ||
Returns: | ||
Dictionary of scaled and one-hot encoded data, dictionary of scaler objects | ||
""" | ||
groupby = len(groups) | ||
|
||
scalar_obs = { | ||
"normalize": MinMaxScaler() if not groupby else GroupMinMaxScaler(), | ||
"symmetric": MinMaxScaler((-1, 1)) | ||
if not groupby | ||
else GroupMinMaxScaler(), | ||
"standard": StandardScaler() if not groupby else GroupStandardScaler(), | ||
"robust": RobustScaler() if not groupby else GroupRobustScaler(), | ||
"quantile": QuantileTransformer( | ||
n_quantiles=1000, random_state=seed, output_distribution="normal" | ||
), | ||
"quantile-uniform": QuantileTransformer( | ||
n_quantiles=1000, random_state=seed, output_distribution="uniform" | ||
), | ||
} | ||
scalers, scaled_data = {}, {} | ||
scalers["input"] = scalar_obs[scaler_type] | ||
scalers["output_label"] = LabelEncoder() | ||
if encoder_type == "onehot": | ||
scalers["output_onehot"] = OneHotEncoder(sparse_output=False) | ||
|
||
if groupby and "quantile" not in scaler_type: | ||
scaled_data["train_x"] = pd.DataFrame( | ||
scalers["input"].fit_transform( | ||
data["train"][input_features], groups=groups | ||
), | ||
columns=input_features, | ||
) | ||
else: | ||
scaled_data["train_x"] = pd.DataFrame( | ||
scalers["input"].fit_transform(data["train"][input_features]), | ||
columns=input_features, | ||
) | ||
scaled_data["val_x"] = pd.DataFrame( | ||
scalers["input"].transform(data["val"][input_features]), columns=input_features | ||
) | ||
scaled_data["test_x"] = pd.DataFrame( | ||
scalers["input"].transform(data["test"][input_features]), columns=input_features | ||
) | ||
if "left_overs" in data: | ||
scaled_data["left_overs_x"] = pd.DataFrame( | ||
scalers["input"].transform(data["left_overs"][input_features]), | ||
columns=input_features, | ||
) | ||
|
||
scalers["output_label"] = LabelEncoder() | ||
scaled_data["train_y"] = scalers["output_label"].fit_transform( | ||
np.argmax(data["train"][output_features].to_numpy(), 1) | ||
) | ||
scaled_data["val_y"] = scalers["output_label"].transform( | ||
np.argmax(data["val"][output_features].to_numpy(), 1) | ||
) | ||
scaled_data["test_y"] = scalers["output_label"].transform( | ||
np.argmax(data["test"][output_features].to_numpy(), 1) | ||
) | ||
if "left_overs" in data: | ||
scaled_data["left_overs_y"] = scalers["output_label"].transform( | ||
np.argmax(data["left_overs"][output_features].to_numpy(), 1) | ||
) | ||
|
||
if encoder_type == "onehot": | ||
scalers["output_onehot"] = OneHotEncoder(sparse_output=False) | ||
scaled_data["train_y"] = scalers["output_onehot"].fit_transform( | ||
np.expand_dims(scaled_data["train_y"], 1) | ||
) | ||
scaled_data["val_y"] = scalers["output_onehot"].transform( | ||
np.expand_dims(scaled_data["val_y"], 1) | ||
) | ||
scaled_data["test_y"] = scalers["output_onehot"].transform( | ||
np.expand_dims(scaled_data["test_y"], 1) | ||
) | ||
if "left_overs" in data: | ||
scaled_data["left_overs_y"] = scalers["output_onehot"].transform( | ||
np.expand_dims(scaled_data["left_overs_y"], 1) | ||
) | ||
|
||
return scaled_data, scalers |