Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test the .pb model in opencv #102

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,35 @@
This is a fork of https://github.com/affinelayer/pix2pix-tensorflow with modifications to enable the trained models to be used in other environments (e.g. [ofxMSATensorFlow](https://github.com/memo/ofxMSATensorFlow)). Reasons as to why these changes are nessecary are described [here](https://github.com/memo/ofxMSATensorFlow/wiki/Loading-and-using-trained-tensorflow-models-in-openFrameworks).

The only **difference in architecture** (if it can be called that) are named tf.identity operators on generator inputs and outputs, to address the last issue above. See [this commit](https://github.com/memo/pix2pix-tensorflow/commit/fb99c19690554400174ebf03aecaf63ad87785c7).

I've also made a **few tweaks to improve usability** (totally personal preference). Most are in [this commit](https://github.com/memo/pix2pix-tensorflow/commit/f0dd7c447e995d2a21d2f49e6b2c1d49a8eb3f7c).
Usage is very similar to the original with a few exceptions:

- input_dir is to a folder containing datasets
- an additional dataset name is required (which dataset to load from input_dir)
- output is also send to output_dir/dataset folder
- when testing or exporting, if no checkpoint is given, it defaults to output_dir/dataset

E.g. to train the command line arguments are:

python pix2pix.py \
--mode train \
--input_dir path/to/all/datasets
--dataset datasetname # folder inside path/to/all/datasets
--output_dir out # output files will be written to out/datasetname

When exporting it also **exports a standalone frozen graph** (called graph_frz.pb) ready to be used by itself (e.g. in [ofxMSATensorFlow](https://github.com/memo/ofxMSATensorFlow)). See [this commit](https://github.com/memo/pix2pix-tensorflow/commit/9e40dd09ebb66714bc21c82edd9c78ac8b013a2c). I.e. after training, run

python pix2pix.py \
--mode export \
--output_dir out # where outputs are
--dataset datasetname # folder inside output_dir

**Note**, even if you train with @affinelayer's original version, you can still load and export with this version to make the nessecary changes to the model.


---

# pix2pix-tensorflow

Based on [pix2pix](https://phillipi.github.io/pix2pix/) by Isola et al.
Expand Down
61 changes: 45 additions & 16 deletions pix2pix.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -14,30 +14,31 @@
import time

parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", help="path to folder containing images")
parser.add_argument("--input_dir", default='../../../data/GoogleArt_wikimedia', help="path to folder containing datasets")
parser.add_argument("--dataset", default='gart_256_p2p_ds2_crop2h', help="name of folder containing images in input_dir")
parser.add_argument("--output_dir", default='./out', help="where to put output files (dataset name will be appended")
parser.add_argument("--mode", required=True, choices=["train", "test", "export"])
parser.add_argument("--output_dir", required=True, help="where to put output files")
parser.add_argument("--seed", type=int)
parser.add_argument("--checkpoint", default=None, help="directory with checkpoint to resume training from or use for testing")
parser.add_argument("--checkpoint", help="directory with checkpoint to resume training from or use for testing")

parser.add_argument("--max_steps", type=int, help="number of training steps (0 to disable)")
parser.add_argument("--max_epochs", type=int, help="number of training epochs")
parser.add_argument("--max_epochs", default=200, type=int, help="number of training epochs")
parser.add_argument("--summary_freq", type=int, default=100, help="update summaries every summary_freq steps")
parser.add_argument("--progress_freq", type=int, default=50, help="display progress every progress_freq steps")
parser.add_argument("--trace_freq", type=int, default=0, help="trace execution every trace_freq steps")
parser.add_argument("--display_freq", type=int, default=0, help="write current training images every display_freq steps")
parser.add_argument("--display_freq", type=int, default=5000, help="write current training images every display_freq steps")
parser.add_argument("--save_freq", type=int, default=5000, help="save model every save_freq steps, 0 to disable")

parser.add_argument("--aspect_ratio", type=float, default=1.0, help="aspect ratio of output images (width/height)")
parser.add_argument("--lab_colorization", action="store_true", help="split input image into brightness (A) and color (B)")
parser.add_argument("--batch_size", type=int, default=1, help="number of images in batch")
parser.add_argument("--which_direction", type=str, default="AtoB", choices=["AtoB", "BtoA"])
parser.add_argument("--batch_size", type=int, default=4, help="number of images in batch")
parser.add_argument("--which_direction", type=str, default="BtoA", choices=["AtoB", "BtoA"])
parser.add_argument("--ngf", type=int, default=64, help="number of generator filters in first conv layer")
parser.add_argument("--ndf", type=int, default=64, help="number of discriminator filters in first conv layer")
parser.add_argument("--scale_size", type=int, default=286, help="scale images to this size before cropping to 256x256")
parser.add_argument("--scale_size", type=int, default=256, help="scale images to this size before cropping to 256x256")
parser.add_argument("--flip", dest="flip", action="store_true", help="flip images horizontally")
parser.add_argument("--no_flip", dest="flip", action="store_false", help="don't flip images horizontally")
parser.set_defaults(flip=True)
parser.set_defaults(flip=False)
parser.add_argument("--lr", type=float, default=0.0002, help="initial learning rate for adam")
parser.add_argument("--beta1", type=float, default=0.5, help="momentum term of adam")
parser.add_argument("--l1_weight", type=float, default=100.0, help="weight on L1 term for generator gradient")
Expand All @@ -46,9 +47,17 @@
# export options
parser.add_argument("--output_filetype", default="png", choices=["png", "jpeg"])
a = parser.parse_args()
a.input_dir = os.path.join(a.input_dir, a.dataset)
a.output_dir = os.path.join(a.output_dir, a.dataset)

if a.checkpoint is not None and len(a.checkpoint) > 0:
a.checkpoint = a.output_dir

if a.checkpoint is None and a.mode != "train":
a.checkpoint = a.output_dir

EPS = 1e-12
CROP_SIZE = 256
CROP_SIZE = a.scale_size

Examples = collections.namedtuple("Examples", "paths, inputs, targets, count, steps_per_epoch")
Model = collections.namedtuple("Model", "outputs, predict_real, predict_fake, discrim_loss, discrim_grads_and_vars, gen_loss_GAN, gen_loss_L1, gen_grads_and_vars, train")
Expand Down Expand Up @@ -331,6 +340,8 @@ def transform(image):
def create_generator(generator_inputs, generator_outputs_channels):
layers = []

generator_inputs = tf.identity(generator_inputs, name = 'generator_inputs')

# encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf]
with tf.variable_scope("encoder_1"):
output = conv(generator_inputs, a.ngf, stride=2)
Expand Down Expand Up @@ -393,6 +404,8 @@ def create_generator(generator_inputs, generator_outputs_channels):
output = tf.tanh(output)
layers.append(output)

layers.append(tf.identity(layers[-1], name='generator_outputs'))

return layers[-1]


Expand Down Expand Up @@ -498,12 +511,14 @@ def save_images(fetches, step=None):

filesets = []
for i, in_path in enumerate(fetches["paths"]):
name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8")))
# name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8")))
name = str(i)
fileset = {"name": name, "step": step}
for kind in ["inputs", "outputs", "targets"]:
filename = name + "-" + kind + ".png"
filename = name + "-" + kind
if step is not None:
filename = "%08d-%s" % (step, filename)
filename = filename[:130] + ".png" # prevent errors with too long filename!
fileset[kind] = filename
out_path = os.path.join(image_dir, filename)
contents = fetches[kind][i]
Expand Down Expand Up @@ -554,7 +569,8 @@ def main():

if a.mode == "test" or a.mode == "export":
if a.checkpoint is None:
raise Exception("checkpoint required for test mode")
a.checkpoint = a.output_dir
#raise Exception("checkpoint required for test mode")

# load some options from the checkpoint
options = {"which_direction", "ngf", "ndf", "lab_colorization"}
Expand Down Expand Up @@ -624,9 +640,22 @@ def main():
print("loading model from checkpoint")
checkpoint = tf.train.latest_checkpoint(a.checkpoint)
restore_saver.restore(sess, checkpoint)

print("exporting model")
export_saver.export_meta_graph(filename=os.path.join(a.output_dir, "export.meta"))
export_saver.save(sess, os.path.join(a.output_dir, "export"), write_meta_graph=False)
filename = os.path.split(checkpoint)[1]
export_path = os.path.join(a.output_dir, 'export')
if not os.path.exists(export_path):
os.makedirs(export_path)

export_saver.export_meta_graph(filename=os.path.join(export_path, filename + "_export.meta"))
export_saver.save(sess, os.path.join(export_path, filename + "_export"), write_meta_graph=False)

# write frozen graph
export_path = os.path.join(a.output_dir, 'export_frz')
if not os.path.exists(export_path):
os.makedirs(export_path)
graph_frz = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['generator/generator_outputs'])
tf.train.write_graph(graph_frz, export_path, filename+'_frz.pb', as_text=False)

return

Expand Down Expand Up @@ -713,7 +742,7 @@ def convert(image):
with tf.name_scope("parameter_count"):
parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in tf.trainable_variables()])

saver = tf.train.Saver(max_to_keep=1)
saver = tf.train.Saver(max_to_keep=200)

logdir = a.output_dir if (a.trace_freq > 0 or a.summary_freq > 0) else None
sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=0, saver=None)
Expand Down