Skip to content

Reimplementation of DeepMind's AlphaGo Zero for the game Viergewinnt (WIP)

License

Notifications You must be signed in to change notification settings

a-metz/alpha_viergewinnt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AlphaViergewinnt

Reimplementation of DeepMind's AlphaGo Zero for the game Viergewinnt (WIP)

pipeline status

coverage report

WORK IN PROGRESS

Current state

  • Viergewinnt game logic
  • Basic Monte-Carlo tree search
  • Reinforcement learning model as MCTS strategy

Usage

$ python play_match.py --help
Usage: play_match.py [OPTIONS]

  Play a match

Options:
  --game [tictactoe|viergewinnt]  Game to be played  [required]
  -x [random|human|mcts]          Strategy for player X  [required]
  -o [random|human|mcts]          Strategy for player O  [required]
  --help                          Show this message and exit.

$ python play_match.py -x human -o mcts --game viergewinnt

MCTS visualization

Visualization of MCTS search tree with networkx

mcts

About

Reimplementation of DeepMind's AlphaGo Zero for the game Viergewinnt (WIP)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages