Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add matik semester to fixtures #355

Merged
merged 2 commits into from
Apr 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
145 changes: 145 additions & 0 deletions competition/fixtures/semesters.json
Original file line number Diff line number Diff line change
Expand Up @@ -930,5 +930,150 @@
"order": 2,
"deadline": "2020-06-01T20:00:00+02:00"
}
},
{
"model": "competition.Event",
"pk": 11,
"fields": {
"competition": 1,
"year": 44,
"school_year": "2019/2020",
"start": "2020-01-01T20:00:00+02:00",
"end": "2025-06-01T20:00:00+02:00",
"season_code": 1
}
},
{
"model": "competition.Semester",
"pk": 11,
"fields": {
"late_tags": []
}
},
{
"model": "competition.series",
"pk": 22,
"fields": {
"semester": 11,
"order": 1,
"deadline": "2099-01-01T20:00:00+02:00"
}
},
{
"model": "competition.series",
"pk": 23,
"fields": {
"semester": 11,
"order": 2,
"deadline": "2099-01-01T20:00:00+02:00"
}
},
{
"model": "competition.Problem",
"pk": 72,
"fields": {
"text": "Majme doty\u010dnicov\u00fd \u0161tvoruholn\u00edk $ABCD$ rozdelen\u00fd uhloprie\u010dkou $AC$ na 2 trojuholn\u00edky. Dok\u00e1\u017ete, \u017ee kru\u017enica vp\u00edsan\u00e1 trojuholn\u00edku $ABC$ sa dotkne \u00fase\u010dky $AC$ v rovnakom bode ako kru\u017enica vp\u00edsan\u00e1 trojuholn\u00edku $ADC$.",
"series": 22,
"order": 1
}
},
{
"model": "competition.Problem",
"pk": 73,
"fields": {
"text": "Majme \u0161tvorcov\u00fa tabu\u013eku s rozmermi $n \\times n$. Ka\u017ed\u00e9 pol\u00ed\u010dko tabu\u013eky je zafarben\u00e9 \u010dervenou, zelenou alebo \u017eltou farbou. Bez toho, aby sme videli tabu\u013eku, si mus\u00edme tipn\u00fa\u0165, \u010di je v nej p\u00e1rny alebo nep\u00e1rny po\u010det \u010derven\u00fdch pol\u00ed\u010dok. \u010co si m\u00e1me tipn\u00fa\u0165 v z\u00e1vislosti od $n$, aby sme mali v\u00e4\u010d\u0161iu \u0161ancu, \u017ee si tipneme spr\u00e1vne? Vieme, \u017ee ka\u017ed\u00e9 mo\u017en\u00e9 ofarbenie tabu\u013eky je rovnako pravdepodobn\u00e9.",
"series": 22,
"order": 2
}
},
{
"model": "competition.Problem",
"pk": 74,
"fields": {
"text": "Konvexn\u00fd 2020-uholn\u00edk m\u00e1 v\u0161etky svoje vrcholy v mre\u017eov\u00fdch bodoch (teda maj\u00fa celo\u010d\u00edseln\u00e9 s\u00faradnice) a m\u00e1 celo\u010d\u00edseln\u00e9 strany. Dok\u00e1\u017ete, \u017ee obvod tohto \u00fatvaru je p\u00e1rne \u010d\u00edslo.",
"series": 22,
"order": 3
}
},
{
"model": "competition.Problem",
"pk": 75,
"fields": {
"text": "Medzi v\u0161etk\u00fdmi nez\u00e1porn\u00fdmi \u010d\u00edslami reprezentovan\u00fdmi vz\u0165ahom $36^k-5^l$, kde $k$ a $l$ s\u00fa kladn\u00e9 cel\u00e9 \u010d\u00edsla, n\u00e1jdite najmen\u0161ie. Svoje tvrdenie dok\u00e1\u017ete.",
"series": 22,
"order": 4
}
},
{
"model": "competition.Problem",
"pk": 76,
"fields": {
"text": "V rovine je bod s celo\u010d\u00edseln\u00fdmi s\u00faradnicami $[x,y]$, av\u0161ak tieto s\u00faradnice nepozn\u00e1me. Pozn\u00e1me v\u0161ak hodnoty v\u00fdrazov $x^2+y$ a $y^2+x$, pri\u010dom tieto hodnoty s\u00fa r\u00f4zne. Dok\u00e1\u017ete, \u017ee s t\u00fdmito inform\u00e1ciami vieme jednozna\u010dne ur\u010di\u0165 s\u00faradnice h\u013eadan\u00e9ho bodu.",
"series": 22,
"order": 5
}
},
{
"model": "competition.Problem",
"pk": 77,
"fields": {
"text": "Majme $k$ prep\u00edna\u010dov v rade. Ka\u017ed\u00fd prep\u00edna\u010d ukazuje hore, doprava, dole alebo do\u013eava. Ak tri susedn\u00e9 prep\u00edna\u010de ukazuj\u00fa r\u00f4znymi smermi, prepneme v\u0161etky tri do \u0161tvrt\u00e9ho smeru. Ak by v jednom momente bolo viac tak\u00fdchto troj\u00edc, prepneme t\u00fa najviac na\u013eavo. \nUk\u00e1\u017ete, \u017ee sa proces zastav\u00ed.",
"series": 22,
"order": 6
}
},
{
"model": "competition.Problem",
"pk": 78,
"fields": {
"text": "Majme \u010d\u00edsla od 1 do $n$. Pre ka\u017ed\u00e9 $n$ n\u00e1jdite najv\u00e4\u010d\u0161ie $k$ tak\u00e9, \u017ee na\u0161e \u010d\u00edsla vieme rozdeli\u0165 do $k$ skup\u00edn s rovnak\u00fdm s\u00fa\u010dtom.",
"series": 23,
"order": 1
}
},
{
"model": "competition.Problem",
"pk": 79,
"fields": {
"text": "Majme rovnostrann\u00fd trojuholn\u00edk. Ka\u017ed\u00e1 jeho strana je rozdelen\u00e1 na $k$ rovnak\u00fdch \u010dast\u00ed pomocou $k-1$ bodov. T\u00fdmito bodmi ve\u010fme rovnobe\u017eky so zvy\u0161n\u00fdmi dvoma stranami trojuholn\u00edka. Takto vznikne trojuholn\u00edkov\u00e1 sie\u0165 zlo\u017een\u00e1 z $k^2$ men\u0161\u00edch trojuholn\u00edkov\u00fdch pol\u00ed\u010dok. Nazvime re\u0165az tak\u00fa sekvenciu pol\u00ed\u010dok, \u017ee ka\u017ed\u00e9 pol\u00ed\u010dko je v nej zahrnut\u00e9 maxim\u00e1lne raz a po sebe nasleduj\u00face pol\u00ed\u010dka maj\u00fa spolo\u010dn\u00fa stranu. Ak\u00e1 je najdlh\u0161ia mo\u017en\u00e1 re\u0165az?",
"series": 23,
"order": 2
}
},
{
"model": "competition.Problem",
"pk": 80,
"fields": {
"text": "Ka\u017ed\u00e9 z \u010d\u00edsel $a_1, a_2, \\dots , a_n$ je rovn\u00e9 $1$ alebo $-1$ a plat\u00ed \n$$a_1a_2a_3a_4 + a_2a_3a_4a_5 + a_3a_4a_5a_6 + \\dots + a_{n-1}a_na_1a_2 + a_na_1a_2a_3 = 0$$\nDok\u00e1\u017ete, \u017ee $n$ je delite\u013en\u00e9 4.",
"series": 23,
"order": 3
}
},
{
"model": "competition.Problem",
"pk": 81,
"fields": {
"text": "Je dan\u00fd \u0161tvorsten $ABCD$. Po \u00fase\u010dke $AB$ sa pohybuje bod $X$. Ozna\u010dme $P$ p\u00e4tu v\u00fd\u0161ky spustenej z bodu $D$ na priamku $CX$. Ur\u010dte mno\u017einu bodov $P$, ktor\u00e9 vyhovuj\u00fa zadaniu.",
"series": 23,
"order": 4
}
},
{
"model": "competition.Problem",
"pk": 82,
"fields": {
"text": "N\u00e1jdite najv\u00e4\u010d\u0161ie \u010d\u00edslo $p$ tak\u00e9, \u017ee je mo\u017en\u00e9 na \u0161achovnicu $2019\\times 2019$ umiestni\u0165 $p$ pe\u0161iakov a $p+2019$ ve\u017e\u00ed tak, aby sa \u017eiadne dve ve\u017ee neohrozovali. (Dve ve\u017ee sa ohrozuj\u00fa, ak s\u00fa v tom istom riadku alebo st\u013apci a v\u0161etky pol\u00ed\u010dka medzi nimi s\u00fa pr\u00e1zdne).",
"series": 23,
"order": 5
}
},
{
"model": "competition.Problem",
"pk": 83,
"fields": {
"text": "Nech $ABC$ je ostrouhl\u00fd nerovnoramenn\u00fd trojuholn\u00edk, $M$ je stred strany $BC$ a $AD$ je os uhla pri vrchole $A$, pri\u010dom $D$ le\u017e\u00ed na strane $BC$. Kru\u017enica op\u00edsan\u00e1 trojuholn\u00edku $ADM$ pret\u00edna $AB$ v bode $E$ a $AC$ v bode $F$. Bod $I$ je stred $EF$ a $MI$ pret\u00edna priamky $AB$ v bode $X$ a $AC$ v bode $Y$. Dok\u00e1\u017ete, \u017ee $AXY$ je rovnoramenn\u00fd.",
"series": 23,
"order": 6
}
}
]
2 changes: 1 addition & 1 deletion competition/serializers.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,7 +292,7 @@ def get_series_num_solutions(self, obj):


@ts_interface(context='competition')
class SeriesWithProblemsSerializer(serializers.ModelSerializer):
class SeriesWithProblemsSerializer(ModelWithParticipationSerializer):
problems = ProblemSerializer(
many=True,
read_only=True
Expand Down
Loading