"Unsupervised Anomaly Detection in Energy Time Series Data Using Variational Recurrent Autoencoders with Attention" 논문 기반 이상치 탐지 프로젝트.
Create conda virtual environment
conda create -n outlier python=3.11
conda activate outlier
Github pull request
git init
git remote add origin https://github.com/YBIGTA/25th-da-outlier-detection.git
git branch -m main
git pull origin main
Install requirements
pip install -r requirements.txt
WORKING DIRECTORY
├── data # Outlier dataset (confidential)
├── output # Model checkpoints & outlier visualizations
├── utils
│ ├── config.yaml # Configurations
│ ├── model.py # Model initialization
│ ├── dataset.py # Dataset initialization
│ └── main.py # Main method
└── requirements.txt
# dataset.py
data_path: "PATH_TO_CSV"
interval_path: "PATH_TO_JSON"
step_size: 50
split_ratio: 0.8
# model.py
lstm_size: 128
latent_size: 20
input_size: 1
seq_size: 150
num_lyears: 1
batch_size: 16
attention_size: 2
sample_reps: 20
directions: 2
# main.py
train: True
recon_prob_threshold: 0.20
optimizer_choice: 'AdamW'
learning_rate: 0.02
epochs: 10
lambda_kl: 0
eta: 0.01
python main.py -c 'CONFIG_PATH'