Skip to content

YBIGTA/25th-da-outlier-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DA Outlier Detection

"Unsupervised Anomaly Detection in Energy Time Series Data Using Variational Recurrent Autoencoders with Attention" 논문 기반 이상치 탐지 프로젝트.

Authors

Environment

Create conda virtual environment

  conda create -n outlier python=3.11
  conda activate outlier

Github pull request

  git init
  git remote add origin https://github.com/YBIGTA/25th-da-outlier-detection.git
  git branch -m main
  git pull origin main

Install requirements

  pip install -r requirements.txt

File Structure

WORKING DIRECTORY
├── data                    # Outlier dataset (confidential)
├── output                  # Model checkpoints & outlier visualizations
├── utils
│   ├── config.yaml         # Configurations
│   ├── model.py            # Model initialization
│   ├── dataset.py          # Dataset initialization
│   └── main.py             # Main method
└── requirements.txt

Data Pipeline

diagram

Configurations

# dataset.py
data_path: "PATH_TO_CSV"
interval_path: "PATH_TO_JSON"
step_size: 50
split_ratio: 0.8

# model.py
lstm_size: 128
latent_size: 20
input_size: 1
seq_size: 150
num_lyears: 1
batch_size: 16
attention_size: 2
sample_reps: 20
directions: 2

# main.py
train: True
recon_prob_threshold: 0.20
optimizer_choice: 'AdamW'
learning_rate: 0.02
epochs: 10
lambda_kl: 0
eta: 0.01

Deployment

  python main.py -c 'CONFIG_PATH'

Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages